Skip to main content

Advertisement

Log in

Osteotropic Polypeptide Nanoparticles with Dual hydroxyapatite Binding Properties and Controlled Cisplatin Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nanoparticles with prolonged residence time in bone constitute a valuable strategy for bone disease treatments. The aim of this work was to synthesise a simple nanoparticulate system exhibiting both anticancer and hydroxyapatite binding properties for potential bone cancer applications.

Methods

The amphiphilic copolymer poly(γ-benzyl-glutamate)-block-poly(glutamic acid) (PBLG-b-PGlu) was synthetised by ring opening polymerization and nanoparticles were obtained by a simple nanoprecipitation method. Nanoparticles were characterized in terms of cisplatin interaction, association, and release as well as interaction with hydroxyapatite and their cytoxicity was studied in three prostate cancer cell lines.

Results

PBLG-b-PGlu nanoparticles of ~50 nm in size were successfully prepared. They could display for the first time dual hydroxyapatite binding and anticancer properties mediated by the PGlu moiety. They could complex cisplatin at a drug loading content of 6.2% (w/w). Cisplatin release was triggered by physiological concentrations of chloride ions according to an almost zero order kinetics during 14 days. Simultaneously, these nanoparticles showed in vitro hydroxyapatite binding. Finally, they were shown to exert a cytotoxic effect in three prostate cancer cell lines that potentially metastasize to bone.

Conclusions

These properties suggest the potential utility of cisplatin-loaded PBLG-b-PGlu nanoparticles as carrier systems for the treatment of bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectroscopy

BLG-NCA:

γ-benzyl-L-glutamate-N-carboxylic anhydride

CDCl3 :

Deuterated chloroform

CDDP:

Cisplatin

DLS:

Dynamic light scattering

DMF:

Dimethylformamide

DPn :

Degree of polymerization

FTIR:

Fourier transform infrared spectroscopy

H NMR:

Proton nuclear magnetic resonance

HAP:

Hydroxyapatite

ITC:

Isothermal titration calorimetry

MTS:

([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4 sulfophenyl)-2H tetrazolium, inner salt)

PBLG-b-PGlu:

Poly(γ-benzyl-glutamate)-block-poly(glutamic acid)

PBS:

Phosphate buffer saline

ROP:

Ring opening polymerization

SEC:

Size exclusion chromatography

TEM:

Transmission Electron Microscopy

TFA:

Trifluoroacetic acid

REFERENCES

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62(1):10–29.

    Article  PubMed  Google Scholar 

  2. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165–76.

    Article  CAS  PubMed  Google Scholar 

  3. Hirabayashi H, Fujisaki J. Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents. Clin Pharmacokinet. 2003;42(15):1319–30.

    Article  CAS  PubMed  Google Scholar 

  4. Low SA, Kopeček J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev. 2012;64(12):1189–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Fujisaki J, Tokunaga Y, Takahashi T, Kimura S, Shimojo F, Hata T. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. V. Biological disposition and targeting characteristics of osteotropic estradiol. Biol Pharm Bull. 1997;20(11):1183–7.

    Article  CAS  PubMed  Google Scholar 

  6. Sekido T, Sakura N, Higashi Y, Miya K, Nitta Y, Nomura M, et al. Novel drug delivery system to bone using acidic oligopeptide: pharmacokinetic characteristics and pharmacological potential. J Drug Target. 2001;9(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  7. Kasugai S, Fujisawa R, Waki Y, Miyamoto K, Ohya K. Selective drug delivery system to bone: small peptide (Asp)6 conjugation. J Bone Miner Res. 2000;15(5):936–43.

    Article  CAS  PubMed  Google Scholar 

  8. Ye H, Jin L, Hu R, Yi Z, Li J, Wu Y, et al. Poly(gamma-L-glutamic acid) cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials. 2006;27(35):5958–65.

    Article  CAS  PubMed  Google Scholar 

  9. Pinzani V, Bressolle F, Johanne Haug I, Galtier M, Blayac JP, Balmès P. Cisplatin-induced renal toxicity and toxicity-modulating strategies: a review. Cancer Chemother Pharmacol. 1994;35(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  10. Harmers FP, Gispen WH, Neijt JP. Neurotoxic side-effects of cisplatin. Eur J Cancer. 1991;27(3):372–6.

    Article  CAS  PubMed  Google Scholar 

  11. Galanski M, Keppler BK. Searching for the magic bullet: anticancer platinum drugs which can be accumulated or activated in the tumor tissue. Anticancer Agents Med Chem. 2007;7(1):55–73.

    Article  CAS  PubMed  Google Scholar 

  12. Yonou H, Yokose T, Kamijo T, Kanomata N, Hasebe T, Nagai K, et al. Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res. 2001;61(5):2177–82.

    CAS  PubMed  Google Scholar 

  13. Higashi N, Koga T, Niwa M. Helical superstructures from a poly(γ-benzyl-l-glutamate)−poly(l-glutamic acid) amphiphilic diblock copolymer: monolayer formation on water and its specific binding of amino acids. Langmuir. 2000;16(7):3482–6.

    Article  CAS  Google Scholar 

  14. Crespo JS, Lecommandoux S, Borsali R, Klok HA, Soldi V. Small-angle neutron scattering from diblock copolymer poly(styrene-d8)-b-poly(γ-benzyl l-glutamate) solutions: rod−coil to coil−coil transition. Macromolecules. 2003;36(4):1253–6.

    Article  CAS  Google Scholar 

  15. Feng Z, Lai Y, Ye H, Huang J, Xi XG, Wu Z. Poly (gamma- L-glutamic acid)-cisplatin bioconjugate exhibits potent antitumor activity with low toxicity: a comparative study with clinically used platinum derivatives. Cancer Sci. 2010;101(11):2476–82.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu W, Li Y, Liu L, Zhang W, Chen Y, Xi F. Biamphiphilic triblock copolymer micelles as a multifunctional platform for anticancer drug delivery. J Biomed Mater Res A. 2010;96A(2):330–40.

    Article  Google Scholar 

  17. Papadopoulos P, Floudas G, Klok HA, Schnell I, Pakula T. Self-assembly and dynamics of poly(gamma-benzyl-l-glutamate) peptides. Biomacromolecules. 2004;5(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  18. Rinaudo M, Domard A. Circular dichroism studies on alpha-L-glutamic acid oligomers in solution. J Am Chem Soc. 1976;98(20):6360–4.

    Article  CAS  PubMed  Google Scholar 

  19. Barbosa MEM, Montembault V, Cammas-Marion S, Ponchel G, Fontaine L. Synthesis and characterization of novel poly(γ-benzyl-L-glutamate) derivatives tailored for the preparation of nanoparticles of pharmaceutical interest. Polym Int. 2007;56(3):317–24.

    Article  CAS  Google Scholar 

  20. Segura-Sanchez F, Montembault V, Fontaine L, Martinez-Barbosa ME, Bouchemal K, Ponchel G. Synthesis and characterization of functionalized poly(gamma-benzyl-L-glutamate) derivates and corresponding nanoparticles preparation and characterization. Int J Pharm. 2010;387(1–2):244–52.

    Article  CAS  PubMed  Google Scholar 

  21. Buffeteau T, Le Calvez E, Castano S, Desbat B, Blaudez D, Dufourcq J. Anisotropic optical constants of α-helix and β-sheet secondary structures in the infrared. J Phys Chem B. 2000;104(18):4537–44.

    Article  CAS  Google Scholar 

  22. Nishiyama N, Yokoyama M, Aoyagi T, Okano T, Sakurai Y, Kataoka K. Preparation and characterization of self-assembled polymer metal complex micelle from cis-dichlorodiammineplatinum(II) and poly(ethylene glycol)-poly(L-aspartic acid) block copolymer in an aqueous medium. Langmuir. 1999;15(2):377–83.

    Article  CAS  Google Scholar 

  23. Chou PY, Scheraga HA. Calorimetric measurement of enthalpy change in the isothermal helix–coil transition of poly-L-lysine in aqueous solution. Biopolymers. 1971;10(4):657–80.

    Article  CAS  PubMed  Google Scholar 

  24. Nishiyama N, Kataoka K. Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodiammineplatinum(II) in the core. J Control Release. 2001;74(1–3):83–94.

    Article  CAS  PubMed  Google Scholar 

  25. Xia Y, Wang Y, Wang Y, Tu C, Qiu F, Zhu L, et al. A tumor pH-responsive complex: Carboxyl-modified hyperbranched polyether and cis-dichlorodiammineplatinum(II). Colloids Surf B: Biointerfaces. 2011;88(2):674–81.

    Article  CAS  PubMed  Google Scholar 

  26. Krizkova S, Adam V, Petrlova J, Zitka O, Stejskal K, Zehnalek J, et al. A suggestion of electrochemical biosensor for study of platinum(II)-DNA interactions. Electroanalysis. 2007;19(2–3):331–8.

    Article  CAS  Google Scholar 

  27. Nilsson S, Zhang W. Helix-coil transition of a titrating polyelectrolyte analyzed within the Poisson-Boltzmann cell model: effects of pH and salt concentration. Macromolecules. 1990;23(25):5234–9.

    Article  CAS  Google Scholar 

  28. Olander DS, Holtzer A. Stability of the polyglutamic acid alpha helix. J Am Chem Soc. 1968;90(17):4549–60.

    Article  CAS  PubMed  Google Scholar 

  29. Holtzer A, Hawkins RB. The state of aggregation of α-helical poly(l-glutamic acid) in aqueous salt solutions. J Am Chem Soc. 1996;118(17):4220–1.

    Article  CAS  Google Scholar 

  30. Kimura T, Takahashi S, Akiyama S, Uzawa T, Ishimori K, Morishima I. Direct observation of the multistep helix formation of poly-l-glutamic acids. J Am Chem Soc. 2002;124(39):11596–7.

    Article  CAS  PubMed  Google Scholar 

  31. Gianasi E, Wasil M, Evagorou EG, Keddle A, Wilson G, Duncan R. HPMA copolymer platinates as novel antitumour agents: in vitro properties, pharmacokinetics and antitumour activity in vivo. Eur J Cancer. 1999;35(6):994–1002.

    Article  CAS  PubMed  Google Scholar 

  32. de Miguel L, Noiray M, Surpateanu G, Iorga BI, Ponchel G. Poly(γ-benzyl-L-glutamate)-PEG-alendronate multivalent nanoparticles for bone targeting. Int J Pharm. 2014;460(1–2):73–82.

    Article  PubMed  Google Scholar 

  33. Ishizaki J, Waki Y, Takahashi-Nishioka T, Yokogawa K, Miyamoto K-I. Selective drug delivery to bone using acidic oligopeptides. J Bone Miner Metab. 2009;27(1):1–8.

    Article  PubMed  Google Scholar 

  34. Barroug A, Glimcher MJ. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J Orthop Res. 2002;20(2):274–80.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We gratefully acknowledge the European postgraduate program from “Ibercaja Foundation” for the financial support of Laura de Miguel. This work has benefited from the facilities and expertise of the Platform for Transmission Electronic Microscopy of IMAGIF (Centre de Recherche de Gif - www.imagif.cnrs.fr) and we thank Miss Cynthia Gillet for her valuable help with the TEM image acquisitions. We thank Dr Silvia Mazzaferro and LCPO, Univ. Bordeaux, CNRS, UMR 5629 for the SEC analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura de Miguel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 25.7 Mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Miguel, L., Popa, I., Noiray, M. et al. Osteotropic Polypeptide Nanoparticles with Dual hydroxyapatite Binding Properties and Controlled Cisplatin Delivery. Pharm Res 32, 1794–1803 (2015). https://doi.org/10.1007/s11095-014-1576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1576-z

KEY WORDS

Navigation