Skip to main content

Advertisement

Log in

Enhancing Effect of Glucose Microspheres in the Viability of Human Mesenchymal Stem Cell Suspensions for Clinical Administration

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A critical limiting factor of cell therapy is the short life of the stem cells. In this study, glucose containing alginate microspheres were developed and characterized to provide a sustained release system prolonging the viability of human mesenchymal stem cells (hMSCs) in a suspension for clinical application.

Methods

The glucose microspheres were satisfactorily elaborated with alginate by emulsification/internal gelation method. Particle size was evaluated by light diffraction and optical microscopy. Shape and surface texture by scanning electron microscopy (SEM). Zeta potential, infrared spectra and release studies were also conducted. Also, rheological properties and stability of hMSCs suspensions with microspheres were tested. The viability of hMSCs was determined by trypan blue dye exclusion staining.

Results

Microspheres of 86.62 μm, spherical shaped and −32.54 mV zeta potential with excellent stability, good encapsulation efficiency and providing an exponential release of glucose were obtained. hMSCs had better survival rate when they were packed with glucose microspheres. Microspheres maintained the aseptic conditions of the cell suspension without rheological, morphological or immunophenotypic disturbances on hMSCs.

Conclusions

Developed microspheres were able to enhance the functionality of hMSC suspension. This strategy could be broadly applied to various therapeutic approaches in which prolonged viability of cells is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AIC::

Akaike’s Information Criterion

EE::

Encapsulation Efficiency

FITC::

Fluorescein Isothiocyanate

FTIR::

Fourier Transforms Infrared Spectroscopy

hMSCs::

Human Mesenchymal Stem Cells

LC::

Loading Capacity

PBS::

Phosphate Buffered Saline

PE::

Phycoerythrin

PY::

Percentage Yield

SEM::

Scanning Electron Microscopy

TPB::

Thioglycollate Penase Broth

TSPB::

Tryptic Soy Penase Broth

References

  1. Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 2011;52:1–7.

    Google Scholar 

  2. Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2008;15:109–16.

    Article  CAS  PubMed  Google Scholar 

  3. Phinney DG. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem. 2012;113:2806–12.

    Article  CAS  PubMed  Google Scholar 

  4. Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12:383–96.

    Article  PubMed  Google Scholar 

  5. Xiao N, Zhao X, Luo P, Guo J, Zhao Q, Lu G, et al. Co-transplantation of mesenchymal stromal cells and cord blood cells in treatment of diabetes. Cytotherapy. 2013;15:1374–84.

    Article  CAS  PubMed  Google Scholar 

  6. Da Silva JS, Hare JM. Cell-based therapies for myocardial repair: emerging role for bone marrow-derived mesenchymal stem cells (MSCs) in the treatment of the chronically injured heart. Methods Mol Biol. 2013;1037:145–63.

    Article  PubMed  Google Scholar 

  7. Miller RH, Bai L, Lennon DP, Caplan AI. The potential of mesenchymal stem cells for neural repair. Discov Med. 2010;9:236–42.

    PubMed  Google Scholar 

  8. Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-berived nesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 year’s follow-up. Arthroscopy. 2013;29:2020–8.

    Article  PubMed  Google Scholar 

  9. Titmarsh DM, Chen H, Glass NR, Cooper-White JJ. Concise review: microfluidic technology platforms: poised to accelerate development and translation of stem cell-derived therapies. Stem Cells Transl Med. 2013;2:946–2.

    Article  Google Scholar 

  10. Chen Y, Yu B, Xue G, Zhao J, Li RK, Liu Z, et al. Effects of storage solutions on the viability of human umbilical cord mesenchymal stem cells for transplantation. Cell Transplant. 2013;22:1075–86.

    Article  PubMed  Google Scholar 

  11. Gálvez P, Clares B, Hmadcha A, Ruiz A, Soria B. Development of a cell-based medicinal product: regulatory structures in the European Union. Br Med Bull. 2013;105:85–105.

    Article  PubMed  Google Scholar 

  12. Brinchmann JE. Expanding autologous multipotent mesenchymal bone marrow stromal cells. J Neurol Sci. 2008;265:127–30.

    Article  CAS  PubMed  Google Scholar 

  13. Chen B, Wright B, Sahoo R, Connon CJ. A novel alternative to cryopreservation for the short-term storage of stem cells for use in cell therapy using alginate encapsulation. Tissue Eng Part C Methods. 2013;19:568–76.

    Article  CAS  PubMed  Google Scholar 

  14. Kelm JM, Fussenegger M. Scaffold-free cell delivery for use in regenerative medicine. Adv Drug Deliv Rev. 2010;62:753–64.

    Article  CAS  PubMed  Google Scholar 

  15. Bayoussef Z, Dixon JE, Stolnik S, Shakesheff KM. Aggregation promotes cell viability, proliferation, and differentiation in an in vitro model of injection cell therapy. J Tissue Eng Regen Med. 2012;6:e61–3.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Wei YT, Zu ZH, Ju RK, Guo MY, Wang XM, et al. Combination of hyaluronic acid hydrogel scaffold and PLGA microspheres for supporting survival of neural stem cells. Pharm Res. 2011;28(6):1406–14.

    Article  CAS  PubMed  Google Scholar 

  17. Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M. Attachment of stem cells to scaffold particles for intra-cerebral transplantation. Nat Protoc. 2009;4:1440–53.

    Article  CAS  PubMed  Google Scholar 

  18. Chen CH, Chang Y, Wang CC, Huang CH, Huang CC, Yeh YC, et al. Construction and characterization of fragmented mesenchymal-stem-cell sheets for intramuscular injection. Biomaterials. 2007;28:4643–51.

    Article  CAS  PubMed  Google Scholar 

  19. Gálvez-Martín P, Hmadcha A, Soria B, Calpena-Campmany AC, Clares-Naveros B. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia. Eur J Pharm Biopharm. 2013. doi:10.1016/j.ejpb.2013.11.002.

    PubMed  Google Scholar 

  20. Lane TA, Garls D, Mackintosh E, Kohli S, Cramer SC. Liquid storage of marrow stromal cells. Transfusion. 2009;49:1471–81.

    Article  CAS  PubMed  Google Scholar 

  21. Orive G, De Castro M, Kong HJ, Hernández RM, Ponce S, Mooney DJ, et al. Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J Control Release. 2009;135:203–10.

    Article  CAS  PubMed  Google Scholar 

  22. Santos E, Pedraz JL, Hernández RM, Orive G. Therapeutic cell encapsulation: ten steps towards clinical translation. J Control Release. 2013;170:1–14.

    Article  CAS  PubMed  Google Scholar 

  23. Tran PH, Tran TT, Park JB, Lee BJ. Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res. 2011;28(10):2353–78.

    Article  CAS  PubMed  Google Scholar 

  24. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Dhanasekaran M, Indumathi S, Rajkumar JS, Sudarsanam D. Effect of high glucose on extensive culturing of mesenchymal stem cells derived from subcutaneous fat, omentum fat and bone marrow. Cell Biochem Funct. 2013;31:20–9.

    Article  CAS  PubMed  Google Scholar 

  26. Martín-Villena MJ, Fernández-Campos F, Calpena-Campmany AC, Bozal-de Febrer N, Ruiz-Martínez MA, Clares-Naveros B. Novel microparticulate systems for thevaginal delivery of nystatin: development and characterization. Carbohydr Polym. 2013;94:1–11.

    Article  PubMed  Google Scholar 

  27. De Vos P, De Haan BJ, Wolters GHJ, Strubbe JH, Van Schilfgaarde R. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia. 1997;40:262–70.

    Article  PubMed  Google Scholar 

  28. Silva CM, Ribeiro AJ, Figueiredo IV, Gonçalves AR, Veiga F. Alginate microspheres prepared by internal gelation: development and effect on insulin stability. Int J Pharm. 2006;311:1–10.

    Article  CAS  PubMed  Google Scholar 

  29. Yamaoka K, Nakagawa T, Uno T. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm. 1978;6:165–75.

    Article  CAS  PubMed  Google Scholar 

  30. Louis KS, Siegel AC. Cell viability analysis using trypan blue: manual and automated methods. Methods Mol Biol. 2011;740:7–12.

    Article  CAS  PubMed  Google Scholar 

  31. European Pharmacopoeia sixth ed. Sterility 01/2008:20601. Strasbourg, France: Council of Europe; 2008. p. 155–158.

  32. Petibotis C, Rigalleau V, Melin AM, Perromat A, Cazorla G, Gin H, et al. Determination of glucose in dried serum samples by Fourier-transform Infrared spectroscopy. Clin Chem. 1999;45:1530–35.

    Google Scholar 

  33. Otterlei M, Ostgaard K, Skjakbraek G, Smidsrod O, Soonshiong P, Espevik T. Induction of cytokine production from human monocytes stimulated with alginate. J Immunother. 1991;10:286–91.

    Article  CAS  PubMed  Google Scholar 

  34. Orive G, Ponce S, Hernandez RM, Gascon AR, Igartua M, Pedraz JL. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials. 2002;23:3825–31.

    Article  CAS  PubMed  Google Scholar 

  35. Silva CM, Ribeiro AJ, Figueiredo M, Ferreira D, Veiga F. Microencapsulation of Hb in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS J. 2005;7:E903–13.

    Article  CAS  PubMed Central  Google Scholar 

  36. Chan ES, Wong SL, Lee PP, Lee JS, Ti TB, Zhang Z, et al. Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydr Polym. 2011;83:225–32.

    Article  CAS  Google Scholar 

  37. Yuen CWM, Yip J, Liu L, Cheuk K, Kan CW, Cheung HC, et al. Chitosan microcapsules loaded with either miconazole nitrate or clotrimazole, prepared via emulsion technique. Carbohydr Polym. 2012;89:795–801.

    Article  CAS  PubMed  Google Scholar 

  38. Lecomte F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. pH sensitive polymer blends used as coating materials to control drug release from spherical beads: elucidation of the underlying mass transport mechanisms. Pharm Res. 2005;22:1129–41.

    Article  CAS  PubMed  Google Scholar 

  39. Cross MM. Rheology of non-Newtonian fluids – a new flow equation for pseudoplastic systems. J Colloid Sci. 1965;20:417–37.

    Article  CAS  Google Scholar 

  40. Fernández-Campos F, Calpena-Campmany AC, Rodríguez-Delgado G, López- Serrano O, Clares-Naveros B. Development and characterization of a novel nystatinloaded nanoemulsion for the buccal treatment of candidosis: ultrastructural effects and release studies. J Pharm Sci. 2012;101:3739–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from project MAT2011-26994 (MCNN-Ministerio de Ciencia e Innovacion) is acknowledged. This research work has been also partially funded by the CEI BioTIC Granada. We thank CABIMER’s GMP Staff for cell preparation and characterization. Thanks are also extended to Dr Lyda Halbaut Bellowa from Barcelona University (Spain) for excellent technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Clares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gálvez, P., Martín, M.J., Calpena, A.C. et al. Enhancing Effect of Glucose Microspheres in the Viability of Human Mesenchymal Stem Cell Suspensions for Clinical Administration. Pharm Res 31, 3515–3528 (2014). https://doi.org/10.1007/s11095-014-1438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1438-8

Key words

Navigation