Skip to main content

Advertisement

Log in

A Mechanism Enhancing Macromolecule Transport Through Paracellular Spaces Induced by Poly-L-Arginine: Poly-L-Arginine Induces the Internalization of Tight Junction Proteins via Clathrin-Mediated Endocytosis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Poly-L-arginine (PLA) enhances the paracellular permeability of the Caco-2 cell monolayer to hydrophilic macromolecules by disappearance of tight junction (TJ) proteins from cell–cell junctions. However, the mechanism of the disappearance of TJ proteins in response to PLA has been unclear. In this study, we investigated the mechanism of disappearance of TJ proteins from cell–cell junctions after the application of PLA to Caco-2 cell monolayers.

Methods

The membrane conductance (Gt), FITC-dextran (FD-4) permeability, and localization of TJ proteins were examined after the treatment of Caco-2 cell monolayers with PLA in the presence of various endocytosis inhibitors. In addition, the localization of endosome marker proteins was also observed.

Results

Clathrin-mediated endocytosis inhibitors suppressed the increase in Gt and Papp of FD-4 induced by PLA, and also significantly suppressed the disappearance of TJ proteins induced by PLA. Furthermore, occludin, one of the TJ proteins, colocalized with early endosome and recycling endosomes after the internalization of occludin induced by PLA, and then was recycled to the cell–cell junctions.

Conclusion

PLA induced the transient internalization of TJ proteins in cell–cell junctions via clathrin-mediated endocytosis, subsequently increasing the permeability of the Caco-2 cell monolayer to FD-4 via a paracellular route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Westergren I, Johansson BB. Altering the blood–brain barrier in the rat by intracarotid infusion of polycations: a comparison between protamine, poly-L-lysine and poly-L-arginine. Acta Physiol Scand. 1993;149(1):99–104.

    Article  PubMed  CAS  Google Scholar 

  2. Kotze AF, Luessen HL, de Leeuw BJ, deBoer AG, Verhoef JC, Junginger HE. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release. 1998;51(1):35–46.

    Article  PubMed  Google Scholar 

  3. Sandri G, Poggi P, Bonferoni MC, Rossi S, Ferrari F, Caramella C. Histological evaluzation of buccal penetration enhancement properties of chitosan and trimethyl chitosan. J Pharm Pharmacol. 2006;58(10):1327–36.

    Article  PubMed  CAS  Google Scholar 

  4. McEwan G, Jepson M, Hirst BH, Simmons NL. Polycation-induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics. Biochim Biophys Acta. 1993;1148(1):51–60.

    Article  PubMed  CAS  Google Scholar 

  5. Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994;11(9):1358–61.

    Article  PubMed  CAS  Google Scholar 

  6. Natsume H, Iwata S, Ohtake K, Miyamoto M, Yamaguchi M, Hosoya K, et al. Screening of cationic compounds as an absorption enhancer for nasal drug delivery. Int J Pharm. 1999;185(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  7. Ohtake K, Maeno T, Ueda H, Ogihara M, Natsume H, Morimoto Y. Poly-L-arginine enhances paracellular permeability via serine/threonine phosphorylation of ZO-1 and tyrosine dephosphorylation of occludin in rabbit nasal epithelium. Pharm Res. 2003;20(11):1838–45.

    Article  PubMed  CAS  Google Scholar 

  8. Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol. 1994;127(6 Pt 1):1617–26.

    Article  PubMed  CAS  Google Scholar 

  9. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141(7):1539–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Furuse M, Sasaki H, Fujimono K, Tsukita S. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol. 1998;143(2):391–401.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Simon DB, Lu Y, Choate KA, Velazquez H, AL-Sabban E, Praga M, et al. Paracellin-1 a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285(5424):103–6.

    Article  PubMed  CAS  Google Scholar 

  12. Al-Sadi R, Khatib K, Guo S, Youssef M, Ma T. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol. 2011;300(6):G1054–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 2005;171(6):939–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Yamaki T, Ohtake K, Ichikawa K, Uchida M, Uchida H, Ohshima S, et al. Poly-L-arginine-induced internalization of tight junction proteins increases the paracellular permeability of the Caco-2 cell monolayer to hydrophilic macromolecules. Biol Pharm Bull. 2013;36(3):432–41.

    Article  PubMed  CAS  Google Scholar 

  15. Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem. 2009;284(31):21036–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Ivanov AL, Nusrat A, Parkos CA. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell. 2004;15(1):176–88.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Stamatovic SM, Keep RF, Wang MM, Jankovic I, Andjelkovic AV. Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem. 2009;284(28):19053–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Bruewer M, Utech M, Ivanov AL, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB. 2005;19(8):923–33.

    Article  CAS  Google Scholar 

  19. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.

    Article  PubMed  CAS  Google Scholar 

  20. Utech M, Mennigen R, Bruewer M. Endocytosis and recycling of tight junction proteins in inflammation. J Biomed Biotechnol. 2010;2010:484987.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Kesiry R, Periyasamy SM, Malhotra D, Xie Z, Shapiro JI. Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int. 2004;66(1):227–41.

    Article  PubMed  CAS  Google Scholar 

  22. Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN, et al. Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol. 2009;184(2):309–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Seki T, Kiuchi T, Seto H, Kimura S, Egawa Y, Ueda H, et al. Analysis of the rat skin permeation of hydrophilic compounds using the Renkin function. Biol Pharm Bull. 2010;33(11):1915–8.

    Article  PubMed  CAS  Google Scholar 

  24. Seth A, Sheth P, Elias BC, Rao R. Protein phosphatases 2A and 1 interact with occludin and negatively regulate the assembly of tight junctions in the CACO-2 cell monolayer. J Biol Chem. 2007;282(15):11487–98.

    Article  PubMed  CAS  Google Scholar 

  25. Mohammad-Panah R, Ackerley C, Rommens J, Choudhury M, Wang Y, Bear CE. The chloride channel CIC-4 co-localizes with cystic fibrosis transmembrane conductance regulator and may mediate chloride flux across the apical membrane of intestinal epithelia. J Biol Chem. 2002;277(1):566–74.

    Article  PubMed  CAS  Google Scholar 

  26. Al-Sadi RM, Ma TY. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol. 2007;178(7):4641–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Ye D, Guo S, Al-Sadi R, Ma TY. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology. 2011;141(4):1323–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideshi Natsume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaki, T., Kamiya, Y., Ohtake, K. et al. A Mechanism Enhancing Macromolecule Transport Through Paracellular Spaces Induced by Poly-L-Arginine: Poly-L-Arginine Induces the Internalization of Tight Junction Proteins via Clathrin-Mediated Endocytosis. Pharm Res 31, 2287–2296 (2014). https://doi.org/10.1007/s11095-014-1324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1324-4

KEY WORDS

Navigation