Skip to main content

Advertisement

Log in

An Overview of Famotidine Polymorphs: Solid-State Characteristics, Thermodynamics, Polymorphic Transformation and Quality Control

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Crystal polymorphism of pharmaceuticals has well-known profound effects on the physical, chemical, and pharmaceutical properties of drugs, which can result in changes in the solubility, stability, dissolution, bioavailability, and efficacy of drugs. In this review article, famotidine (FAM), which has a well-known trade name of Pepcid®, was selected as a model drug. Although FAM has three polymorphs (forms A, B and C), forms A and B have been commonly discussed. The active pharmaceutical ingredient (API) in the commercial version of FAM is the metastable form B. FAM has been a concern of FDA because of the physical properties, solubilities, bioavailabilities, or bioequivalencies of the different polymorphic forms. In addition, a patent infringement suit of FAM polymorph had been made sound legal arguments in the pharmaceutical market. We review the solid-state characteristics, thermodynamics, polymorphic transformation, and quality control of FAM in drug products. In particular, pharmaceutical processes, such as grinding, compression, and heating temperature have a significant effect on the polymorphic transformation of FAM. Moreover, environmental humidity and residual water content should be well controlled to prevent polymorphic transformation of FAM during pharmaceutical processing. Several thermal and spectroscopic analytical techniques used for qualitative and quantitative determinations of polymorphic transformation of FAM after different treatments or quality control of FAM in the commercial tablets before and after the expiration dates have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Purohit R, Venugopalan P. Polymorphism: an overview. Resonance. 2009;14:882–93.

    Article  CAS  Google Scholar 

  2. Brittain HG. Polymorphism in pharmaceutical solids. 2nd ed. New York: Informa HealthCare; 2009.

    Google Scholar 

  3. Byrn S, Pfeiffer R, Ganey M, Hoiberg C, Poochikian G. Pharmaceutical solids: a strategic approach to regulatory considerations. Pharm Res. 1995;12:945–54.

    Article  CAS  PubMed  Google Scholar 

  4. Lee AY, Erdemir D, Myerson AS. Crystal polymorphism in chemical process development. Annu Rev Chem Biomol Eng. 2011;2:259–80.

    Article  CAS  PubMed  Google Scholar 

  5. Karpinski PH. Polymorphism of active pharmaceutical ingredients. Chem Eng Technol. 2006;29:233–7.

    Article  CAS  Google Scholar 

  6. Chawla G, Bansal AK. Challenges in polymorphism of pharmaceuticals. CRIPS. 2004;5:9–12.

    Google Scholar 

  7. Newman W, Byrn S. Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discov Today. 2003;8:898–905.

    Article  CAS  PubMed  Google Scholar 

  8. Raw AS, Furness MS, Gill DS, Adams Jr RC, Holcombe FO, Yu LX. Regulatory considerations of pharmaceutical solid polymorphism in Abbreviated New Drug Applications (ANDAs). Adv Drug Deliv Rev. 2004;56:397–414.

    Article  CAS  PubMed  Google Scholar 

  9. Llinàs A, Goodman JM. Polymorph control: past, present and future. Drug Discov Today. 2008;13:198–210.

    Article  PubMed  Google Scholar 

  10. Morissette SL, Soukasene S, Levinson D, Cima MJ, Almarsson O. Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization. Proc Natl Acad Sci U S A. 2003;100:2180–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Center for Drug Evaluation and Research. Guidance for industry; ANDAs: pharmaceutical solid polymorphism: chemistry, manufacturing, and controls information. Rockville: US FDA; 2007.

    Google Scholar 

  12. EMEA ICH Q6A Guideline. Specifications: test procedures and acceptance criteria for new drug substances and new drug products; 2000.

  13. Payghan SA, Patwekar S, Kate VK, Khavane K, Purohit S. Pharmaceutical solid polymorphism: approach in regulatory consideration. J Glob Pharma Technol. 2010;2(1):8–16.

    CAS  Google Scholar 

  14. WHO. Guidelines on submission of documentation for a multisource (generic) finished pharmaceutical product for the WHO Prequalification of Medicines Programme: quality part. WHO Tech Rep Ser. 2012;970:122–96.

    Google Scholar 

  15. Chaudhary A, Nagaich U, Gulati N, Sharma VK, Khosa RL. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: a recent review. J Adv Pharm Educ Res. 2012;2(1):32–67.

    Google Scholar 

  16. Pandey B, Lohray VB, Lohray BB. Importance of polymorphs and salts in the pharmaceutical industry. In: Chorghade MS, editor. Drug discovery and development: drug development, vol. 2. New Jersey: Wiley; 2007. p. 201–18.

    Google Scholar 

  17. Lu J, Rohani S. Polymorphism and crystallization of active pharmaceutical ingredients (APIs). Curr Med Chem. 2009;16:884–905.

    Article  CAS  PubMed  Google Scholar 

  18. Morissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ, Lemmo AV, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004;56:275–300.

    Article  CAS  PubMed  Google Scholar 

  19. Rodríguez-Spong B, Price CP, Jayasankar A, Matzger AJ, Rodríguez-Hornedo N. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv Drug Deliv Rev. 2004;56:241–74.

    Article  PubMed  Google Scholar 

  20. Zhang GZ, Law D, Schmitt EA, Qiu Y. Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev. 2004;56:371–90.

    Article  CAS  PubMed  Google Scholar 

  21. Bianco S, Caron V, Tajber L, Corrigan OI, Nolan L, Hu Y, et al. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying. AAPS PharmSciTech. 2012;13:647–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Huttenrauch R, Fricke S, Zielke P. Mechanical activation of pharmaceutical systems. Pharm Res. 1985;2:253–7.

    Article  Google Scholar 

  23. Otsuka M, Otsuka K, Kaneniwa N. Relation between polymorphic transformation pathway during grinding and the physicochemical properties of bulk powders for pharmaceutical preparations. Drug Dev Ind Pharm. 1994;20:1649–60.

    Article  CAS  Google Scholar 

  24. Shakhtshneider TP. Phase transformations and stabilization of metastable states of molecular crystals under mechanical activation. Solid State Ionics. 1997;101–103:851–6.

    Article  Google Scholar 

  25. Hédoux A, Guinet Y, Paccou L, Danède F, Derollez P. Polymorphic transformation of anhydrous caffeine upon grinding and hydrostatic pressurizing analyzed by low-frequency raman spectroscopy. J Pharm Sci. 2013;102:162–70.

    Article  PubMed  Google Scholar 

  26. Guo Z, Ma M, Wang T, Chang D, Jiang T, Wang S. A kinetic study of the polymorphic transformation of nimodipine and indomethacin during high shear granulation. AAPS PharmSciTech. 2011;12:610–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chan HK, Doelker E. Polymorphic transformation of some drugs under compression. Drug Dev Ind Pharm. 1985;11:315–32.

    Article  CAS  Google Scholar 

  28. Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5:905–20.

    Article  CAS  PubMed  Google Scholar 

  29. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48:27–42.

    Article  CAS  PubMed  Google Scholar 

  30. Reutzel-Edens SM. Achieving polymorph selectivity in the crystallization of pharmaceutical solids: basic considerations and recent advances. Curr Opin Drug Discov Dev. 2006;9:806–15.

    CAS  Google Scholar 

  31. Erdemir D, Lee AY, Myerson AS. Polymorph selection: the role of nucleation, crystal growth and molecular modeling. Curr Opin Drug Discov Dev. 2007;10:746–55.

    CAS  Google Scholar 

  32. Yu LX, Lionberger RA, Raw AS, D’Costa R, Wu H, Hussain AS. Applications of process analytical technology to crystallization processes. Adv Drug Deliv Rev. 2004;56:349–69.

    Article  CAS  PubMed  Google Scholar 

  33. Nagy ZK, Braatz RD. Advances and new directions in crystallization control. Annu Rev Chem Biomol Eng. 2012;3:55–75.

    Article  CAS  PubMed  Google Scholar 

  34. Storey RA, Ymén I. Solid state characterization of pharmaceuticals. West Sussex: Wiley; 2011.

    Book  Google Scholar 

  35. Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, et al. Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res. 2001;18:859–66.

    Article  CAS  PubMed  Google Scholar 

  36. Dammann HG. Clinical efficacy of famotidine in the treatment of acid-related diseases: an overview. Hepato-Gastroenterology. 1990;37 Suppl 1:2–5.

    PubMed  Google Scholar 

  37. Langtry HD, Grant SM, Goa KL. Famotidine. An updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in peptic ulcer disease and other allied diseases. Drugs. 1989;38:551–90.

    Article  CAS  PubMed  Google Scholar 

  38. Schiff M, Peura D. HZT-501 (DUEXIS(®); ibuprofen 800 mg/famotidine 26.6 mg) gastrointestinal protection in the treatment of the signs and symptoms of rheumatoid arthritis and osteoarthritis. Exp Rev Gastroenterol Hepatol. 2012;6:25–35.

    Article  CAS  Google Scholar 

  39. Yamamoto K, Hojo H, Koshima I, Chung UI, Ohba S. Famotidine suppresses osteogenic differentiation of tendon cells in vitro and pathological calcification of tendon in vivo. J Orthop Res. 2012;30:1958–62.

    Article  CAS  PubMed  Google Scholar 

  40. Fogg TB, Semple D. Combination therapy with H2 and H1 antihistamines in acute, non-compromising allergic reactions. Emerg Med J. 2008;25:165–6.

    Article  CAS  PubMed  Google Scholar 

  41. Molinari SP, Kaminski R, Rocco AD, Yahr MD. The use of famotidine in the treatment of Parkinson’s disease: a pilot study. J Neural Transm Park Dis Dement Sect. 1995;9:243–7.

    Article  CAS  PubMed  Google Scholar 

  42. Breitner JCS, Welsh KA, Helms MJ, Gaskell PC, Gau BA, Roses AD, et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging. 1995;16:523–30.

    Article  CAS  PubMed  Google Scholar 

  43. Fahmy RH, Kassem MA. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2008;69:993–1003.

    Article  CAS  PubMed  Google Scholar 

  44. Patel DJ, Patel JK, Pandya VM. Improvement in the dissolution of poorly water soluble drug using media milling technique. Thai J Pharm Sci. 2010;34:155–64.

    CAS  Google Scholar 

  45. Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Adv Drug Deliv Rev. 2004;56:335–47.

    Article  CAS  PubMed  Google Scholar 

  46. Lu J, Wang XJ, Yang X, Ching CB. Characterization and selective crystallization of famotidine polymorphs. J Pharm Sci. 2007;96:2457–68.

    Article  CAS  PubMed  Google Scholar 

  47. Hassan MA, Salem MS, Sueliman MS, Najib NM. Characterization of famotidine polymorphic forms. Int J Pharm. 1997;149:227–32.

    Article  CAS  Google Scholar 

  48. Német Z, Kis GC, Pokol G, Demeter A. Quantitative determination of famotidine polymorphs: X-ray powder diffractometric and Raman spectrometric study. J Pharm Biomed Anal. 2009;49:338–46.

    Article  PubMed  Google Scholar 

  49. Lin SY, Cheng WT, Wang SL. Thermodynamic and kinetic characterization of polymorphic transformation of famotidine during grinding. Int J Pharm. 2006;318:86–91.

    Article  CAS  PubMed  Google Scholar 

  50. Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal. 2011;55:618–44.

    Article  CAS  PubMed  Google Scholar 

  51. Hegedüs B, Bod P, Harsányi K, Péter I, Kálmán A, Párkányi L. Comparison of the polymorphic modifications of famotidine. J Pharm Biomed Anal. 1989;7:563–9.

    Article  PubMed  Google Scholar 

  52. Sagdinc S, Bayari S. Experimental and theoretical infrared spectra of famotidine and its interaction with ofloxacin. J Mol Struct. 2005;744–747:369–76.

    Article  Google Scholar 

  53. Overgaard J, Hibbs DE. The experimental electron density in polymorphs A and B of the anti-ulcer drug famotidine. Acta Crystallogr A. 2004;60:480–7.

    Article  PubMed  Google Scholar 

  54. Cheng WT, Lin SY, Li MJ. Raman microspectroscopic mapping or thermal system used to investigate milling-induced solid-state conversion of famotidine polymorphs. J Raman Spectrosc. 2007;38:1595–601.

    Article  CAS  Google Scholar 

  55. Cheng WT, Lin SY. Famotidine polymorphic transformation in the grinding process significantly depends on environmental humidity or water content. Int J Pharm. 2008;357:164–8.

    Article  CAS  PubMed  Google Scholar 

  56. Beckmann W. Seeding the desired polymorph: background, possibilities, limitations, and case studies. Org Process Res Dev. 2000;4:372–83.

    Article  CAS  Google Scholar 

  57. Lu J, Wang XJ, Yang X, Ching CB. Polymorphism and crystallization of famotidine. Cryst Growth Des. 2007;7:1590–8.

    Article  CAS  Google Scholar 

  58. Debnath S, Suryanarayanan R. Influence of processing-induced phase transformations on the dissolution of theophylline tablets. AAPS PharmSciTech. 2004;5:39–49.

    Article  PubMed Central  Google Scholar 

  59. Govindarajan R, Suryanarayanan R. Processing-induced phase transformations and their implications on pharmaceutical product quality. In: Hilfiker R, editor. Polymorphism: in the pharmaceutical industry. Weiheim: Wiley-VCH Verlag GmbH & Co.; 2006. p. 333–64.

    Chapter  Google Scholar 

  60. Fernandez-Bertran JF. Mechanochemistry—an overview. Pure Appl Chem. 1999;71:581–6.

    Article  CAS  Google Scholar 

  61. Colombo I, Grassi G, Grassi M. Drug mechanochemical activation. J Pharm Sci. 2009;98:3961–86.

    Article  CAS  PubMed  Google Scholar 

  62. Altheimer BD, Pagola S, Zeller M, Mehta MA. Mechanochemical conversions between crystalline polymorphs of a complex organic solid. Cryst Growth Des. 2013;13:3447–53.

    Article  CAS  Google Scholar 

  63. Ferenczy GG, Párkányi L, Ángyán JG, Kálmán A, Hegedűs B. Crystal and electronic structure of two polymorphic modifi cations of famotidine. An experimental and theoretical study. J Mol Struct THEOCHEM. 2000;503:73–9.

    Article  CAS  Google Scholar 

  64. Német Z, Sajó I, Demeter A. Rietveld refinement in the routine quantitative analysis of famotidine polymorphs. J Pharm Biomed Anal. 2010;51:572–6.

    Article  PubMed  Google Scholar 

  65. Nagaraju R, Prathusha AP, Subhash Chandra Bose P, Kaza R, Bharathi K. Preparation and evaluation of famotidine polymorphs. Curr Drug Discov Technol. 2010;7:106–16.

    CAS  PubMed  Google Scholar 

  66. Cheng WT, Lin SY, Wang SL. Differential scanning calorimetry with curve-fitting program used to quantitatively analyze the polymorphic transformation of famotidine in the compressed compact. Drug Dev Ind Pharm. 2008;34:1368–75.

    Article  CAS  PubMed  Google Scholar 

  67. Roux MV, Dávalos JZ, Jiménez P. Effect of pressure on the polymorphic forms of famotidine. Thermochim Acta. 2002;394:19–24.

    Article  CAS  Google Scholar 

  68. Német Z, Hegedűs B, Szántay Jr C, Sztatisz J, Pokol G. Pressurization effects on the polymorphic forms of famotidine. Thermochim Acta. 2005;430:35–41.

    Article  Google Scholar 

  69. Lin SY, Cheng WT, Wang SL. Thermal micro-Raman spectroscopic study of polymorphic transformation of famotidine under different compression pressures. J Raman Spectrosc. 2007;38:39–43.

    Article  CAS  Google Scholar 

  70. Auer ME, Griesser UJ, Sawatzki J. Qualitative and quantitative study of polymorphic forms in drug formulations by near infrared FT-Raman spectroscopy. J Mol Struct. 2003;661–662:307–17.

    Article  Google Scholar 

  71. Nishizawa S, Takeda MW, Tani M. Terahertz time-domain spectroscopy (THz-TDS) approach to the quality control on pharmaceutical products. Proc 3rd Int Work Far Infrared Technol. 2010;16a-5:106–11.

    Google Scholar 

  72. Ajito K, Ueno Y, Song HJ, Tamechika E, Kukutsu N. Terahertz spectroscopic imaging of polymorphic forms in pharmaceutical crystals. Mol Cryst Liq Cryst. 2011;538:33–8.

    Article  CAS  Google Scholar 

  73. Brettmann BK, Cheng K, Myerson AS, Trout BL. Electrospun formulations containing crystalline active pharmaceutical ingredients. Pharm Res. 2013;30:238–46.

    Article  CAS  PubMed  Google Scholar 

  74. Wildfong PL, Hancock BC, Moore MD, Morris KR. Towards an understanding of the structurally based potential for mechanically activated disordering of small molecule organic crystals. J Pharm Sci. 2006;95:2645–56.

    Article  CAS  PubMed  Google Scholar 

  75. Rasenack N, Muller BW. Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol. 2004;9:1–13.

    Article  CAS  PubMed  Google Scholar 

  76. Vippagunta SR, Brittain HG, Grant DJ. Crystalline solids. Adv Drug Deliv Rev. 2001;48:3–26.

    Article  CAS  PubMed  Google Scholar 

  77. Patel S, Kaushal AM, Bansal AK. Compression physics in the formulation development of tablets. Crit Rev Ther Drug Carrier Syst. 2006;23:1–65.

    Article  CAS  PubMed  Google Scholar 

  78. Ajito K, Ueno Y, Song HJ, Tamechika E, Kukutsu N. Terahertz chemical imaging of molecular networks for pharmaceutical applications. ECS Trans. 2011;35(7):57–165.

    Google Scholar 

  79. Ajito K, Ueno Y, Song HJ. Visualization of pharmaceutical drug molecules by terahertz chemical imaging. NTT Tech Rev. 2012;10(2):1–6.

    Google Scholar 

  80. Ajito K, Ueno Y. THz chemical imaging for biological applications. IEEE Trans Terahertz Sci Technol. 2011;1:293–300.

    Article  CAS  Google Scholar 

  81. Kawase M, Saito T, Ogawa M, Uejima H, Hatsuda Y, Kawanishi S, et al. Application of terahertz absorption spectroscopy to evaluation of aging variation of medicine. Anal Sci. 2011;27:209–12.

    Article  CAS  PubMed  Google Scholar 

  82. Kovac C. Drug company takes 10 others to court for patent infringement. BMJ. 2001;323:252.

    Article  PubMed Central  Google Scholar 

  83. Takenaka T. Patent infringement damages in Japan and the United States: will increased patent infringement damage awards revive the Japanese economy? Wash Univ J Law Policy. 2002;2:309–70.

    Google Scholar 

  84. Hussey DT. Comparing notes: selected current issues in drug patent listing and litigation in Canada and the United States. Can Intellect Prop Law Rev. 2003;19:7–94.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by National Science Council, Taipei, Taiwan, Republic of China (NSC-95-2320-B-075-002-MY2). The authors also thank Misses W. T. Cheng, M. J. Li and Dr. S. L. Wang for their contributions on these studies and Miss Y. T. Huang for figures drawing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Yang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SY. An Overview of Famotidine Polymorphs: Solid-State Characteristics, Thermodynamics, Polymorphic Transformation and Quality Control. Pharm Res 31, 1619–1631 (2014). https://doi.org/10.1007/s11095-014-1323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1323-5

KEY WORDS

Navigation