Skip to main content
Log in

The Extracellular Microenvironment Explains Variations in Passive Drug Transport Across Different Airway Epithelial Cell Types

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types.

Methods

Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types.

Results

Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in the extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells.

Conclusion

Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4-OHP:

4-hydroxypropranolol

DMEM:

Dulbecco’s Modified Eagle Medium

FBS:

Fetal bovine serum

LC/MS:

Liquid chromatography-mass spectrometry

LY:

Lucifer yellow

N-DIP:

N-desisopropyl propranolol

PR:

Propranolol

REFERENCES

  1. Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10(3):195–204.

    Article  PubMed  CAS  Google Scholar 

  2. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, et al. MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci. 1999;88(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  3. Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977;59(1):221–6.

    PubMed  CAS  Google Scholar 

  4. Mathias NR, Timoszyk J, Stetsko PI, Megill JR, Smith RL, Wall DA. Permeability characteristics of Calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J Drug Target. 2002;10(1):31–40.

    Article  CAS  Google Scholar 

  5. Gruenert DC, Finkbeiner WE, Widdicombe JH. Culture and transformation of human airway epithelial cells. Am J Physiol. 1995;268(3):L347–60.

    PubMed  CAS  Google Scholar 

  6. Forbes II. Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm Sci Technolo Today. 2000;3(1):18–27.

    Article  PubMed  CAS  Google Scholar 

  7. Wan H, Winton HL, Soeller C, Stewart GA, Thompson PJ, Gruenert DC, et al. Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. Eur Respir J. 2000;15(6):1058–68.

    Article  PubMed  CAS  Google Scholar 

  8. Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res. 2006;23(7):1482–90.

    Article  PubMed  CAS  Google Scholar 

  9. Grainger CI, Saunders M, Buttini F, Telford R, Merolla LL, Martin GP, et al. Critical characteristics for corticosteroid solution metered dose inhaler bioequivalence. Mol Pharm. 2012;9(3):563–9.

    Article  PubMed  CAS  Google Scholar 

  10. Patton JS, Brain JD, Davies LA, Fiegel J, Gumbleton M, Kim KJ, et al. The particle has landed-characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv. 2010;23(S2):S71–87.

    Article  PubMed  CAS  Google Scholar 

  11. Suresh MV, Wagner MC, Rosania GR, Stringer KA, Min KA, Risler L, et al. Pulmonary administration of a water-soluble curcumin complex reduces severity of acute lung injury. Am J Respir Cell Mol Biol. 2012;47(3):280–7.

    Article  PubMed  CAS  Google Scholar 

  12. Florea BI, Cassara ML, Junginger HE, Borchard G. Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3. J Control Release. 2003;87(1–3):131–8.

    Article  PubMed  CAS  Google Scholar 

  13. Foster KA, Avery ML, Yazdanian M, Audus KL. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int J Pharm. 2000;208(1–2):1–11.

    Article  PubMed  CAS  Google Scholar 

  14. Tronde A, Norden B, Marchner H, Wendel AK, Lennernas H, Bengtsson UH. Pulmonary absorption rate and bioavailability of drugs in vivo in rats: structure-absorption relationships and physicochemical profiling of inhaled drugs. J Pharm Sci. 2003;92(6):1216–33.

    Article  PubMed  CAS  Google Scholar 

  15. Ehrhardt C, Forbes B, Kim K-J. In vitro models of the tracheo-bronchial epithelium. In: Ehrhardt C, Kim K-J, editors. Drug absorption studies. New York: Springer US; 2008. p. 235–57.

    Chapter  Google Scholar 

  16. Forrest IA, Murphy DM, Ward C, Jones D, Johnson GE, Archer L, et al. Primary airway epithelial cell culture from lung transplant recipients. Eur Respir J. 2005;26(6):1080–5.

    Article  PubMed  CAS  Google Scholar 

  17. Mathias NR, Kim KJ, Lee VHL. Targeted drug delivery to the respiratory tract: solute permeability of air-interface cultured rabbit tracheal epithelial cell monolayers. J Drug Target. 1996;4(2):79–86.

    Article  PubMed  CAS  Google Scholar 

  18. Sporty JL, Horalkova L, Ehrhardt C. In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opin Drug Metab Toxicol. 2008;4(4):333–45.

    Article  PubMed  CAS  Google Scholar 

  19. Madlova M, Bosquillon C, Asker D, Dolezal P, Forbes B. In-vitro respiratory drug absorption models possess nominal functional P-glycoprotein activity. J Pharm Pharmacol. 2009;61(3):293–301.

    Article  PubMed  CAS  Google Scholar 

  20. Lin H, Li H, Cho HJ, Bian S, Roh HJ, Lee MK, et al. Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci. 2007;96(2):341–50.

    Article  PubMed  CAS  Google Scholar 

  21. Frixione E, Lagunes R, Ruiz L, Urban M, Porter RM. Actin cytoskeleton role in the structural response of epithelial (MDCK) cells to low extracellular Ca2+. J Muscle Res Cell Motil. 2001;22(3):229–42.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang X, Shedden K, Rosania GR. A cell-based molecular transport simulator for pharmacokinetic prediction and cheminformatic exploration. Mol Pharm. 2006;3(6):704–16.

    Article  PubMed  CAS  Google Scholar 

  23. Avdeef A, Nielsen PE, Tsinman O. PAMPA-a drug absorption in vitro model: 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur J Pharm Sci. 2004;22(5):365–74.

    PubMed  CAS  Google Scholar 

  24. Korjamo T, Heikkinen AT, Waltari P, Monkkonen J. The asymmetry of the unstirred water layer in permeability experiments. Pharm Res. 2008;25(7):1714–22.

    Article  PubMed  CAS  Google Scholar 

  25. Berube K, Prytherch Z, Job C, Hughes T. Human primary bronchial lung cell constructs: the new respiratory models. Toxicology. 2010;278(3):311–8.

    Article  PubMed  CAS  Google Scholar 

  26. Upthagrove AL, Nelson WL. Importance of amine pKa and distribution coefficient in the metabolism of fluorinated propranolol derivatives. Preparation, identification of metabolite regioisomers, and metabolism by CYP2D6. Drug Metab Dispos. 2001;29(11):1377–88.

    PubMed  CAS  Google Scholar 

  27. Fagerholm U, Lennernas H. Experimental estimation of the effective unstirred water layer thickness in the human jejunum, and its importance in oral drug absorption. Eur J Pharm Sci. 1995;3(5):247–53.

    Article  CAS  Google Scholar 

  28. Hidalgo IJ, Hillgren KM, Grass GM, Borchardt RT. Characterization of the unstirred water layer in Caco-2 cell monolayers using a novel diffusion apparatus. Pharm Res. 1991;8(2):222–7.

    Article  PubMed  CAS  Google Scholar 

  29. Youdim KA, Avdeef A, Abbott NJ. In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov Today. 2003;8(21):997–1003.

    Article  PubMed  CAS  Google Scholar 

  30. Taub ME, Kristensen L, Frokjaer S. Optimized conditions for MDCK permeability and turbidimetric solubility studies using compounds representative of BCS classes I-IV. Eur J Pharm Sci. 2002;15(4):331–40.

    Article  PubMed  CAS  Google Scholar 

  31. Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J Clin Invest. 1998;102(6):1125–31.

    Article  PubMed  CAS  Google Scholar 

  32. Stewart CE, Torr EE, Mohd Jamili NH, Bosquillon C, Sayers I. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J Allergy. 2012;2012:943982.

    Google Scholar 

  33. Huang TW, Chan YH, Cheng PW, Young YH, Lou PJ, Young TH. Increased mucociliary differentiation of human respiratory epithelial cells on hyaluronan-derivative membranes. Acta Biomater. 2010;6(3):1191–9.

    Article  PubMed  CAS  Google Scholar 

  34. Guzman K, Gray TE, Yoon JH, Nettesheim P. Quantitation of mucin RNA by PCR reveals induction of both MUC2 and MUC5AC mRNA levels by retinoids. Am J Physiol Lung Cell. 1996;271(6):L1023–8.

    CAS  Google Scholar 

  35. Szkotak AJ, Man SF, Duszyk M. The role of the basolateral outwardly rectifying chloride channel in human airway epithelial anion secretion. Am J Respir Cell Mol Biol. 2003;29(6):710–20.

    Article  PubMed  CAS  Google Scholar 

  36. Wang D, Sun Y, Zhang W, Huang P. Apical adenosine regulates basolateral Ca2+-activated potassium channels in human airway Calu-3 epithelial cells. Am J Physiol Cell Physiol. 2008;294(6):C1443–53.

    Article  PubMed  CAS  Google Scholar 

  37. Lehmann M, Noack D, Wood M, Perego M, Knaus UG. Lung epithelial injury by B. anthracis lethal toxin is caused by MKK-dependent loss of cytoskeletal integrity. PLoS One. 2009;4(3)e4755.

  38. Hamilton KO, Backstrom G, Yazdanian MA, Audus KL. P-glycoprotein efflux pump expression and activity in Calu-3 cells. J Pharm Sci. 2001;90(5):647–58.

    Article  PubMed  CAS  Google Scholar 

  39. Yu JY, Zheng N, Mane G, Min KA, Hinestroza JP, Zhu H, et al. A cell-based computational modeling approach for developing site-directed molecular probes. PLoS Comput Biol. 2012;8(2):e1002378.

    Article  PubMed  CAS  Google Scholar 

  40. Eixarch H, Haltner-Ukomadu E, Beisswenger C, Bock U. Drug delivery to the lung: permeability and physicochemical characteristics of drugs as the basis for a pulmonary biopharmaceutical classification system (pBCS). J Epithelial Biol Pharmacol. 2010;3:1–14.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by NIH grant R01GM078200 (G. R. Rosania). K. A. Min was supported by the Warner Lambert/Parke Davis Fellowship, University of Michigan College of Pharmacy and the Rackham Pre-doctoral Fellowship. The authors would like to acknowledge and thank the staff of the University of Michigan Microscopy and Image Analysis Laboratory for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gus R. Rosania.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 571 kb)

ESM 2

(PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, K.A., Talattof, A., Tsume, Y. et al. The Extracellular Microenvironment Explains Variations in Passive Drug Transport Across Different Airway Epithelial Cell Types. Pharm Res 30, 2118–2132 (2013). https://doi.org/10.1007/s11095-013-1069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1069-5

KEY WORDS

Navigation