Skip to main content
Log in

Mapping Ion-Induced Mesophasic Transformation in Lyotropic In Situ Gelling System and its Correlation with Pharmaceutical Performance

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate influence of ion induced mesophasic transformation on pharmaceutical performance of in situ gelling system consisting of glyceryl monooleate.

Methods

The prepared system showed mesophasic transformation during its conversion from sol to gel upon controlled hydration. The process of mesophasic transformation was studied by SAXS, DSC, rheology and plane polarized light microscopy. Further the influence of additives i.e. naproxen salts (sodium and potassium) and naproxen (base) on the process of mesophasic transformation was also elucidated.

Results

It was observed that addition of salt form of naproxen transformed W/O emulsions into cubic mesophase whereas addition of base form of naproxen formed reverse hexagonal (HII) phase upon controlled hydration. The cubic mesophase formed by naproxen salts retarded the drug release for initial 3 h whereas HII phase showed sustained drug release characteristics for naproxen base following Higuchi drug release kinetics.

Conclusion

The current work suggests that formulations with tailor made pharmaceutical performance can be developed by selecting proper additives in the system so as to obtain the desired mesophase ‘on demand’ thereby controlling drug release characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fahr A, van Hoogevest P, May S, Bergstrand N, Leigh M. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur J Pharm Sci. 2005;26:251–65.

    Article  PubMed  CAS  Google Scholar 

  2. Shan-Yang L, Hsiu-Li L, Mei-Jane L. Adsorption of binary liquid crystals onto cellulose membrane for thermo-responsive drug delivery. Adsorption. 2002;8:197–202.

    Article  Google Scholar 

  3. Jensen J, Schutzbach J. Activation of mannosyltransferase II by nonbilayer phospholipids. Biochemistry. 1984;23:1115–9.

    Article  CAS  Google Scholar 

  4. Caboi F, Nylander T, Razumas V, Talaikyte Z, Monduzzi M, Larsson K. Structural effects, mobility, and redox behavior of vitamin K1 hosted in the monoolein/water liquid crystalline phases. Langmuir. 1997;13:5476–83.

    Article  CAS  Google Scholar 

  5. Lindblom G, Rilfors L. Cubic phases and isotropic structures formed by membrane lipids—possible biological relevance. Biochim Biophys Acta. 1989;988:221–56.

    Article  CAS  Google Scholar 

  6. Larsson K. Cubic lipid-water phases: structures and biomembrane aspects. J Phys Chem. 1989;93:7304–14.

    Article  CAS  Google Scholar 

  7. Seddon J. Lyotropic phase behaviour of biological amphiphiles. Ber Bunsenges Phys Chem. 1996;100:380–93.

    Article  CAS  Google Scholar 

  8. Chang C, Bodmeier R. Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J Control Release. 1997;46:215–22.

    Article  CAS  Google Scholar 

  9. Isrealachvilli J, Mitchell D, Ninham B. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans II. 1976;72:1525–68.

    Article  Google Scholar 

  10. Patton J, Carey M. Watching fat digestion. Science. 1979;204:145–8.

    Article  PubMed  CAS  Google Scholar 

  11. Chernik G. Phase studies of surfactant-water systems. Curr Opin Colloid Interface Sci. 2000;4:381–90.

    Article  Google Scholar 

  12. Larsson K. Two cubic phases in monoolein/water system. Nature. 1983;304:664.

    Article  Google Scholar 

  13. Lutton E. Phase behavior of aqueous systems of monoglycerides. JAOCS. 1965;42:1068–70.

    Article  PubMed  CAS  Google Scholar 

  14. Qiu H, Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials. 2000;21:223–34.

    Article  PubMed  CAS  Google Scholar 

  15. Rappolt M, Di Gregorio G, Almgren M, Amenitsch H, Pabst G. Non-equilibrium formation of the cubic Pn3m phase in a monoolein/water system. Europhy Lett. 2006;75:267–73.

    Article  CAS  Google Scholar 

  16. Drummond C, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci. 2000;4:449–56.

    Article  Google Scholar 

  17. Caboi F, Murgia S, Monduzzi M, Lazzari P. NMR investigation on Melaleuca Alternifolia essential oil dispersed in the monoolein aqueous system: phase behavior and dynamics. Langmuir. 2002;18:7916–22.

    Article  CAS  Google Scholar 

  18. Shah M, Paradkar A. Cubic liquid crystalline glyceryl monooleate matrices for oral delivery of enzyme. Int J Pharm. 2005;294(1–2):161–71.

    Article  PubMed  CAS  Google Scholar 

  19. Sadhale Y, Shah J. Glyceryl monooleate cubic phase gel as chemical stability enhancer of cefazolin and cefuroxime. Pharm Dev Tech. 1998;3(4):549–56.

    Article  CAS  Google Scholar 

  20. Fong W, Hanley T, Boyd B. Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Rel. 2009;135(3):218–26.

    Article  CAS  Google Scholar 

  21. Yaghmur A, Laggner P, Zhang S, Rappolt M. Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants. PLoS One. 2007;2(5):e479.

    Article  PubMed  Google Scholar 

  22. Patil S, Venugopal E, Bhat S, Mahadik K, Paradkar A. Probing influence of mesophasic transformation in self-emulsifying system: effect of ion. Mol Pharm. 2012;9(2):318–24.

    Article  PubMed  CAS  Google Scholar 

  23. Patil S, Venugopal E, Bhat S, Mahadik K, Paradkar A. Microstructural elucidation of self-emulsifying system: effect of chemical structure. Pharm Res. 2012;29:2180–8.

    Article  PubMed  CAS  Google Scholar 

  24. Biradar S, Dhumal R, Paradkar A. Rheological investigation of self-emulsification process. J Pharm Pharm Sci. 2009;12(1):17–31.

    PubMed  CAS  Google Scholar 

  25. Rosevear F. The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J Am Oil Chem Soc. 1954;31:628–39.

    Article  CAS  Google Scholar 

  26. Clogston J, Craciun G, Hart D, Caffrey M. Controlling release from the lipidic cubic phase by selective alkylation. J Control Release. 2005;102:441–61.

    Article  PubMed  CAS  Google Scholar 

  27. Glatter O, Orthaber D, Stradner A, Scherf G, Fanun M, Garti N, et al. Sugar-Ester nonionic microemulsion :structural characterization. J Colloid Interface Sci. 2001;241:215–25.

    Article  PubMed  CAS  Google Scholar 

  28. Salonen A, Muller F, Glatter O. Dispersions of internally liquid crystalline systems stabilized by charged disklike particles as pickering emulsions: basic properties and time-resolved behavior. Langmuir. 2008;24(10):5306–14.

    Article  PubMed  CAS  Google Scholar 

  29. Yariv D, Efrat R, Libster D, Aserin A, Garti N. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems. Colloid Surfaces B. 2010;78:185–92.

    Article  CAS  Google Scholar 

  30. Collins K, Washabaugh M. The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys. 1985;18(4):323–422.

    Article  PubMed  CAS  Google Scholar 

  31. Cacace M, Landau E, Ramsden J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys. 1997;30:241–77.

    Article  PubMed  CAS  Google Scholar 

  32. Dong R, Hao J. Complex fluids of Polyoxyethylene Monoalkyl Ether nonionic surfactants. Chem Rev. 2010;110:4978–5022.

    Article  PubMed  CAS  Google Scholar 

  33. Borne J, Nylander T, Khan A. Phase behavior and aggregate formation for the aqueous monoolein system mixed with sodium oleate and oleic acid. Langmuir. 2001;17:7742–51.

    Article  CAS  Google Scholar 

  34. Li S, Yamashita Y, Yamazaki M. Effect of Electrostatic Interactions on Phase Stability of Cubic Phases of Membranes of Monoolein/Dioleoylphosphatidic Acid Mixtures. Biophys J. 2001;81:983–93.

    Article  PubMed  CAS  Google Scholar 

  35. Senatra D, Lendinara L, Giri M. W/O microemulsions as model systems for the study of water confined in microenvironments: low resolution 1H magnetic resonance relaxation analysis. Prog Colloid Polym Sci. 1991;84:122–8.

    Article  CAS  Google Scholar 

  36. Schulz P, Puig J, Barreiro G, Torres L. Thermal transitions in surfactant-based lyotropic liquid crystals. Thermochim Acta. 1994;231:239–56.

    Article  CAS  Google Scholar 

  37. Kogan A, Shalev D, Raviv U, Aserin A, Garti N. Formation and Characterization of ordered bicontinuous microemulsions. J Phys Chem B. 2009;113:10669–78.

    Article  PubMed  CAS  Google Scholar 

  38. Ulrich A, Watts A. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J. 1994;66:1441–9.

    Article  PubMed  CAS  Google Scholar 

  39. Mezzenga R, Meyer C, Servais C, Romoscanu A, Sagalowicz L, Hayward R. Shear rheology of Lyotropic liquid crystals: a case study. Langmuir. 2005;21(8):3322–33.

    Article  PubMed  CAS  Google Scholar 

  40. Tadros T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv Colloid Interface. 2007;109:227–58.

    Google Scholar 

  41. Negrini R, Mezzenga R. pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir. 2011;27:5296–303.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments And Disclosures

The authors thank Dr. Guruswamy Kumaraswamy, Scientist, Polymer Chemistry, National Chemical Laboratory, Pune for providing facility of Small Angle X ray Scattering and for extending his cooperation in SAXS data analysis and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kakasaheb R. Mahadik or Anant R. Paradkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, S.S., Venugopal, E., Bhat, S. et al. Mapping Ion-Induced Mesophasic Transformation in Lyotropic In Situ Gelling System and its Correlation with Pharmaceutical Performance. Pharm Res 30, 1906–1914 (2013). https://doi.org/10.1007/s11095-013-1033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1033-4

KEY WORDS

Navigation