Skip to main content
Log in

Ternary Polymeric Nanoparticles for Oral siRNA Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Poor stability and inefficient absorption in the intestinal tract are major barriers confronting oral delivery of siRNA. We aimed to uncover if ternary polymeric nanoparticles (cationic polymer/siRNA/anionic component) can overcome these obstacles through changing the formulation-related parameters.

Methods

Ternary polymeric nanoparticles were prepared by ionic gelation of chitosan, N-trimethyl chitosan (TMC), or thiolated trimethyl chitosan (TTMC) with tripolyphosphate (TPP) or hyaluronic acid (HA), and siRNA was simultaneously encapsulated. Structural stabilities and siRNA protection of these nanoparticles were assessed in simulated intestinal milieu. Their transport across ex vivo rat ileum, macrophage uptake, in vitro gene silencing, and in vivo biodistribution after oral administration were investigated.

Results

Ternary polymeric nanoparticles formed by TTMC, siRNA, and TPP (TTMC/siRNA/TPP nanoparticles) showed suitable structural stability and siRNA protection in the intestinal tract, good permeability across ex vivo rat ileum, superior cellular uptake and gene silencing efficiency in Raw 264.7 cells, and high systemic biodistribution after oral administration.

Conclusions

TTMC/siRNA/TPP nanoparticles demonstrated efficient gene silencing in vitro and systemic biodistribution in vivo, therefore, they were expected to be potential vehicles for oral siRNA delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CF:

colonic fluids

CMH:

colonic mucosa homogenates

CTH:

colonic tissue homogenates

DF:

duodenal fluids

DMH:

duodenal mucosa homogenates

DTH:

duodenal tissue homogenates

FAM-NC siRNA:

FAM-labeled NC siRNA

HA:

hyaluronic acid

IF:

ileal fluids

IMH:

ileal mucosa homogenates

ITH:

ileal tissue homogenates

JF:

jejunal fluids

JMH:

jejunal mucosa homogenates

JTH:

jejunal tissue homogenates

LPS:

lipopolysaccharide

NC siRNA:

negative control siRNA

RNAi:

RNA interference

Scr:

scrambled siIL-6

siIL-6 :

interleukin-6 siRNA

siRNA:

small interfering RNA

TAMRA-NC siRNA:

TAMRA-labeled NC siRNA

TMC:

N-trimethyl chitosan

TPP:

tripolyphosphate

TTMC:

thiolated trimethyl chitosan.

REFERENCES

  1. Ravina M, Cubillo E, Olmeda D, Novoa-Carballal R, Fernandez-Megia E, Riguera R, et al. Hyaluronic acid/chitosan-g-poly(ethylene glycol) nanoparticles for gene therapy: An application for pDNA and siRNA delivery. Pharm Res. 2010;27(12):2544–55.

    Article  PubMed  CAS  Google Scholar 

  2. Singha K, Namgung R, Kim WJ. Polymers in small-interfering RNA delivery. Nucleic Acid Ther. 2011;21(3):133–47.

    PubMed  CAS  Google Scholar 

  3. Gao Y, Liu XL, Li XR. Research progress on siRNA delivery with nonviral carriers. Int J Nanomed. 2011;6:1017–25.

    Article  CAS  Google Scholar 

  4. Morgen M, Bloom C, Beyerinck R, Bello A, Song W, Wilkinson K, et al. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharm Res. 2012;29(2):427–40.

    Article  PubMed  CAS  Google Scholar 

  5. O’Neill MJ, Bourre L, Melgar S, O’Driscoll CM. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today. 2011;16(5–6):203–18.

    Article  PubMed  Google Scholar 

  6. Wilson DS, Dalmasso G, Wang LX, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater. 2010;9(11):923–8.

    Article  PubMed  CAS  Google Scholar 

  7. Kriegel C, Amiji M. Oral TNF-alpha gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J Control Release. 2011;150(1):77–86.

    Article  PubMed  CAS  Google Scholar 

  8. Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, Ostroff GR, Czech MP. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature. 2009;458(7242):1180–4.

    Article  PubMed  CAS  Google Scholar 

  9. Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharmaceut. 2010;399(1–2):1–11.

    Article  CAS  Google Scholar 

  10. Zhao X, Yin LC, Ding JY, Tang C, Gu SH, Yin CH, et al. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. J Control Release. 2010;144(1):46–54.

    Article  PubMed  CAS  Google Scholar 

  11. Mao SR, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62(1):12–27.

    Article  PubMed  CAS  Google Scholar 

  12. Wang BQ, He CB, Tang C, Yin CH. Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers. Biomaterials. 2011;32(20):4630–8.

    Article  PubMed  CAS  Google Scholar 

  13. Dehoussea V, Garbacki N, Jaspart S, Castagne D, Piel G, Colige A, et al. Comparison of chitosan/siRNA and trimethylchitosan/siRNA complexes behaviour in vitro. Int J Biol Macromol. 2010;46(3):342–9.

    Article  Google Scholar 

  14. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009;17(1):162–8.

    Article  PubMed  CAS  Google Scholar 

  15. Sun W, Mao SR, Wang YJ, Junyaprasert VB, Zhang TT, Na LD, et al. Bioadhesion and oral absorption of enoxaparin nanocomplexes. Int J Pharmaceut. 2010;386(1–2):275–81.

    Article  CAS  Google Scholar 

  16. Jintapattanakit A, Junyaprasert VB, Mao S, Sitterberg J, Bakowsky U, Kissel T. Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharmaceut. 2007;342(1–2):240–9.

    Article  CAS  Google Scholar 

  17. Xu YM, Zhan CY, Fan LH, Wang L, Zheng H. Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharmaceut. 2007;336(2):329–37.

    Article  CAS  Google Scholar 

  18. Yin LC, Ding JY, He CB, Cui LM, Tang C, Yin CH. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials. 2009;30(29):5691–700.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang YL, Wei W, Lv PP, Wang LY, Ma GH. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur J Pharm Biopharm. 2011;77(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  20. Lee DW, Yun KS, Ban HS, Choe W, Lee SK, Lee KY. Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release. 2009;139(2):146–52.

    Article  PubMed  CAS  Google Scholar 

  21. Liao ZX, Ho YC, Chen HL, Peng SF, Hsiao CW, Sung HW. Enhancement of efficiencies of the cellular uptake and gene silencing of chitosan/siRNA complexes via the inclusion of a negatively charged poly(g-glutamic acid). Biomaterials. 2010;31(33):8780–8.

    Article  PubMed  CAS  Google Scholar 

  22. Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release. 2005;103(3):643–53.

    Article  PubMed  CAS  Google Scholar 

  23. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115(2):216–25.

    Article  PubMed  CAS  Google Scholar 

  24. Yamagata T, Morishita M, Kavimandan NJ, Nakamura K, Fukuoka Y, Takayama K, et al. Characterization of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids. J Control Release. 2006;112(3):343–9.

    Article  PubMed  CAS  Google Scholar 

  25. Yin LC, Ding JY, Fei LK, He M, Cui FY, Tang C, et al. Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. Int J Pharmaceut. 2008;350(1–2):220–9.

    Article  CAS  Google Scholar 

  26. Li T, Shi XW, Du YM, Tang YF. Quaternized chitosan/alginate nanoparticles for protein delivery. J Biomed Mater Res A. 2007;83A(2):383–90.

    Article  CAS  Google Scholar 

  27. Kim TH, Jiang HL, Jere D, Park IK, Cho MH, Nah JW, et al. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci. 2007;32(7):726–53.

    Article  CAS  Google Scholar 

  28. Bernkop-Schnurch A, Hornof M, Guggi D. Thiolated chitosans. Eur J Pharm Biopharm. 2004;57(1):9–17.

    Article  PubMed  Google Scholar 

  29. Sun W, Mao SR, Mei D, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin. Eur J Pharm Biopharm. 2008;69(2):417–25.

    Article  PubMed  CAS  Google Scholar 

  30. Qi L, Chapel JP, Castaing JC. Stability and adsorption properties of electrostatic complexes: design of hybrid nanostructures for coating applications. Langmuir. 2007;23(24):11996–8.

    Article  PubMed  CAS  Google Scholar 

  31. Asayama S, Nogawa M, Takei Y, Akaike T, Maruyama A. Synthesis of novel polyampholyte comb-type copolymers consisting of a poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier. Bioconjugate Chem. 1998;9(4):476–81.

    Article  CAS  Google Scholar 

  32. Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35–52.

    Article  PubMed  CAS  Google Scholar 

  33. Germershaus O, Mao SR, Sitterberg J, Bakowsky U, Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: Establishment of structure-activity relationships in vitro. J Control Release. 2008;125(2):145–54.

    Article  PubMed  CAS  Google Scholar 

  34. Ferreiroa MG, Crooke RM, Tillman L, Hardee G, Bodmeier R. Stability of polycationic complexes of an antisense oligonucleotide in rat small intestine homogenates. Eur J Pharm Biopharm. 2003;55(1):19–26.

    Article  Google Scholar 

  35. Hua Q, He RQ. Tau could protect DNA double helix structure. BBA-Proteins Proteom. 2003;1645(2):205–11.

    Article  CAS  Google Scholar 

  36. Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 2006;11(19–20):905–10.

    Article  PubMed  CAS  Google Scholar 

  37. Khoury M, Escriou V, Courties G, Galy A, Yao R, Largeau C, et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum-US. 2008;58(8):2356–67.

    Article  CAS  Google Scholar 

  38. Jensen LB, Griger J, Naeye B, Varkouhi AK, Raemdonck K, Schiffelers R, et al. Comparison of polymeric siRNA nanocarriers in a murine LPS-activated macrophage cell line: gene silencing, toxicity and off-target gene expression. Pharm Res. 2012;29(3):669–82.

    Article  PubMed  CAS  Google Scholar 

  39. Yoon HJ, Moon ME, Park HS, Im SY, Kim YH. Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem Bioph Res Co. 2007;358(3):954–9.

    Article  CAS  Google Scholar 

Download references

ACKNOWLDGEMENTS AND DISCLOSURES

This work was funded by grants from National Natural Science Foundation of China (51173029, 81072595, and 81172995).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.02 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., He, C., Tang, C. et al. Ternary Polymeric Nanoparticles for Oral siRNA Delivery. Pharm Res 30, 1228–1239 (2013). https://doi.org/10.1007/s11095-012-0961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0961-8

KEY WORDS

Navigation