Skip to main content
Log in

Preclinical Studies of YK-4-272, an Inhibitor of Class II Histone Deacetylases by Disruption of Nucleocytoplasmic Shuttling

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The HDAC shuttling inhibitor, YK-4-272 functions by restricting nuclear shuttling of Class II HDACs. Pre-clinical investigations of YK-4-272 bioavailability, pharmacokinetics, in vivo toxicity and tumor growth inhibition were performed to determine its potential as an HDAC shuttling disruptor for use in clinical applications.

Methods

The solubility, lipophilicity, in vitro metabolic stability, in vitro intestinal permeability, and in vivo pharmacokinetics of YK-4-272 were determined by HPLC methods. The anti-tumor activity of YK-4-272 was determined by monitoring athymic Balb/c nude mice bearing PC-3 xenografts.

Results

Oral bioavailability of YK-4-272 is supported by its solubility (0.537 mg/mL) and apparent partition coefficient of 2.0. The compound was chemically and metabolically stable and not a substrate for CYP450. In Caco-2 cell transport studies, YK-4-272 was highly permeable. The time-concentration profile of YK-4-272 in plasma resulted in a C max of 2.47 μg/mL at 0.25 h with a AUC of 3.304 μg × h/mL. Treatment of PC-3 tumor xenografts with YK-4-272 showed significant growth delay.

Conclusions

YK-4-272 is stable and bio-available following oral administration. Growth inhibition of cancer cells and tumors was observed. These studies support advancing YK-4-272 for further evaluation as a novel HDAC shuttling inhibitor for use in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMMC:

3-[2-(N,N-diehtyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin

BQ:

7-benzoyloxyquinoline

CEC:

3-cyano-7-ethoxycoumarin

CYP450:

Cytochrome P450

MFC:

7-methoxy-4-triflouromethylcoumarin

MRP:

multidrug resistance-associated protein

P-gp:

P-glycoprotein

TEER:

transepithelial electrical resistance

REFERENCES

  1. Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell. 1997;89:349–56.

    Article  PubMed  CAS  Google Scholar 

  2. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800.

    Article  PubMed  CAS  Google Scholar 

  3. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370:737–49.

    Article  PubMed  Google Scholar 

  4. Finnin MS, Donigian JR, Pavletich NP. Structure of the histone deacetylase SIRT2. Nat Struct Biol. 2001;8:621–5.

    Article  PubMed  CAS  Google Scholar 

  5. Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res. 2007;17:195–211.

    PubMed  CAS  Google Scholar 

  6. Ashburner BP, Westerheide SD, Baldwin Jr AS. The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol. 2001;21:7065–77.

    Article  PubMed  CAS  Google Scholar 

  7. Blagosklonny MV, Robey R, Sackett DL, Du L, Traganos F, Darzynkiewicz Z, et al. Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther. 2002;1:937–41.

    PubMed  CAS  Google Scholar 

  8. Naryzhny SN, Lee H. The post-translational modifications of proliferating cell nuclear antigen: acetylation, not phosphorylation, plays an important role in the regulation of its function. J Biol Chem. 2004;279:20194–9.

    Article  PubMed  CAS  Google Scholar 

  9. Varshochi R, Halim F, Sunters A, Alao JP, Madureira PA, Hart SM, et al. ICI182,780 induces p21Waf1 gene transcription through releasing histone deacetylase 1 and estrogen receptor alpha from Sp1 sites to induce cell cycle arrest in MCF-7 breast cancer cell line. J Biol Chem. 2005;280:3185–96.

    Article  PubMed  CAS  Google Scholar 

  10. Halkidou K, Cook S, Leung HY, Neal DE, Robson CN. Nuclear accumulation of histone deacetylase 4 (HDAC4) coincides with the loss of androgen sensitivity in hormone refractory cancer of the prostate. Eur Urol. 2004;45:382–9.

    Google Scholar 

  11. Kong Y, Jung M, Wang K, Grindrod S, Velena A, Lee S, et al. Histone deacetylase cytoplasmic trapping by a novel fluorescent HDAC inhibitor. Mol Cancer Ther 2011;10:1591–99.

    Google Scholar 

  12. Doh MJ, Jung YJ, Kim I, Kong HS, Kim YM. Synthesis and in vitro properties of prednisolone 21-sulfate sodium as a colon-specific prodrug of prednisolone. Arch Pharm Res. 2003;26:258–63.

    Article  PubMed  CAS  Google Scholar 

  13. Lee J, Rho J, Yang Y, Kong H, Jung Y, Kim Y. Synthesis and in vitro evaluation of N-nicotinoylglycyl-2-(5-fluorouracil-1-yl)-D, L-glycine as a colon-specific prodrug of 5-fluorouracil. J Drug Target. 2007;15:199–205.

    Article  PubMed  CAS  Google Scholar 

  14. Uchida M, Fukazawa T, Yamazaki Y, Hashimoto H, Miyamoto Y. A modified fast (4 day) 96-well plate Caco-2 permeability assay. J Pharmacol Toxicol Methods. 2009;59:39–43.

    Article  PubMed  CAS  Google Scholar 

  15. Frederick KS, Maurer TS, Kalgutkar AS, Royer LJ, Francone OL, Winter SM, et al. Pharmacokinetics, disposition and lipid-modulating activity of 5-{2-[4-(3,4-difluorophenoxy)-phenyl]-ethylsulfamoyl}-2-methyl-benzoic acid, a potent and subtype-selective peroxisome proliferator-activated receptor alpha agonist in preclinical species and human. Xenobiotica. 2009;39:766–81.

    Article  PubMed  CAS  Google Scholar 

  16. Bey E, Marchais-Oberwinkler S, Werth R, Negri M, Al-Soud YA, Kruchten P, et al. Design, synthesis, biological evaluation and pharmacokinetics of bis(hydroxyphenyl) substituted azoles, thiophenes, benzenes, and aza-benzenes as potent and selective nonsteroidal inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1). J Med Chem. 2008;51:6725–39.

    Article  PubMed  CAS  Google Scholar 

  17. Madgula VL, Avula B, Pawar RS, Shukla YJ, Khan IA, Walker LA, et al. in vitro metabolic stability and intestinal transport of P57AS3 (P57) from Hoodia gordonii and its interaction with drug metabolizing enzymes. Planta Med. 2008;74:1269–75.

    Article  PubMed  CAS  Google Scholar 

  18. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997;283:46–58.

    PubMed  CAS  Google Scholar 

  19. OECD. Acute oral toxicity-up and down procedure. OECD Guides for testing of chemicals. 2001.

  20. Sheikh KD, Banerjee PP, Jagadeesh S, Grindrod SC, Zhang L, Paige M, et al. Fluorescent epigenetic small molecule induces expression of the tumor suppressor ras-association domain family 1A and inhibits human prostate xenograft. J Med Chem. 2010;53:2376–82.

    Article  PubMed  CAS  Google Scholar 

  21. Jeanne E. Phillips AA. MultiScreen® Caco‐2 Assay System Protocol Note. Optimization of Caco‐2 cell growth and differentiation for drug transport assay studies using a 96‐well assay system. Millipore Corporation 2003:1–12.

  22. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175:880–5.

    Article  PubMed  CAS  Google Scholar 

  23. GENTEST/BDBiosciencesCompany. CYP2C9/MFC high throuoghput inhibitor screening kit instruction manual. 2002.

  24. Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21:1–26.

    Article  PubMed  CAS  Google Scholar 

  25. Konsoula Z, Jung M. Involvement of P-glycoprotein and multidrug resistance associated protein 1 on the transepithelial transport of a mercaptoacetamide-based histone-deacetylase inhibitor in Caco-2 cells. Biol Pharm Bull. 2009;32:74–8.

    Article  PubMed  CAS  Google Scholar 

  26. Kerns EH, Di L. Pharmaceutical profiling in drug discovery. Drug Discov Today. 2003;8:316–23.

    Article  PubMed  CAS  Google Scholar 

  27. FDA/CDER. Guidance for industry. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. http://www.fda.gov/cder/guidance/index.htm 2000:1–13.

  28. Royer I, Monsarrat B, Sonnier M, Wright M, Cresteil T. Metabolism of docetaxel by human cytochromes P450: interactions with paclitaxel and other antineoplastic drugs. Cancer Res. 1996;56:58–65.

    PubMed  CAS  Google Scholar 

  29. Long L, Dolan ME. Role of cytochrome P450 isoenzymes in metabolism of O(6)-benzylguanine: implications for dacarbazine activation. Clin Cancer Res. 2001;7:4239–44.

    PubMed  CAS  Google Scholar 

  30. Crespi CL, Miller VP, Penman BW. Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal Biochem. 1997;248:188–90.

    Article  PubMed  CAS  Google Scholar 

  31. Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell. 2006;23:289–96.

    Article  PubMed  CAS  Google Scholar 

  32. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  PubMed  CAS  Google Scholar 

  33. Yazdanian M, Briggs K, Jankovsky C, Hawi A. The "high solubility" definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs. Pharm Res. 2004;21:293–9.

    Article  PubMed  CAS  Google Scholar 

  34. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46:27–43.

    Article  PubMed  CAS  Google Scholar 

  35. Wils P, Warnery A, Phung-Ba V, Legrain S, Scherman D. High lipophilicity decreases drug transport across intestinal epithelial cells. J Pharmacol Exp Ther. 1994;269:654–8.

    PubMed  CAS  Google Scholar 

  36. FDA/CDER. Guidance for industry. Bioavailability and Bioequivalence Studies for Orally Administered Drug Products-General Considerations. http://www.fda.gov/cder/guidance/index.htm 2003:1–23.

  37. Novotny-Diermayr V, Sangthongpitag K, Hu CY, Wu X, Sausgruber N, Yeo P, et al. SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol Cancer Ther. 2010;9:642–52.

    Article  PubMed  CAS  Google Scholar 

  38. Obach RS, Walsky RL, Venkatakrishnan K. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions. Drug Metab Dispos. 2007;35:246–55.

    Article  PubMed  CAS  Google Scholar 

  39. Obach RS, Walsky RL, Venkatakrishnan K, Houston JB, Tremaine LM. in vitro cytochrome P450 inhibition data and the prediction of drug-drug interactions: qualitative relationships, quantitative predictions, and the rank-order approach. Clin Pharmacol Ther. 2005;78:582–92.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Youngmi Kim, Yunjin Jung, and Mikell Paige for helpful discussions and technical assistance. This study was supported by National Institutes of Health grants (NIH/NCI P30 CA51008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton L. Brown.

Additional information

Hye-Sik Kong and Shuo Tian contributed equally to this publication.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, HS., Tian, S., Kong, Y. et al. Preclinical Studies of YK-4-272, an Inhibitor of Class II Histone Deacetylases by Disruption of Nucleocytoplasmic Shuttling. Pharm Res 29, 3373–3383 (2012). https://doi.org/10.1007/s11095-012-0832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0832-3

KEY WORDS

Navigation