Skip to main content

Advertisement

Log in

Structure-Skin Permeability Relationship of Dendrimers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate skin penetration of poly (amidoamine) (PAMAM) dendrimers as a function of surface charge and molecular weight in presence and absence of iontophoresis.

Methods

Dendrimers were labeled with fluoroisothiocynate (FITC); skin penetration of dendrimers was studied using excised porcine skin in-vitro. Skin penetration of FITC-labeled dendrimers was quantified using confocal laser scanning microscope (CLSM). G2-G6 NH2, G3.5-COOH and G4-OH dendrimers were used.

Results

Cationic dendrimers showed higher skin penetration than neutral and anionic dendrimers. Skin penetration of cationic dendrimer increased linearly with increase in treatment time. Iontophoresis enhanced skin penetration of cationic and neutral dendrimers. Increase in current strength and current duration increased skin transport of dendrimers. Passive and iontophoretic skin penetration of cationic dendrimers was inversely related to their molecular weight. Dendrimer penetrated the skin through intercellular lipids and hair follicles. With iontophoresis, dendrimer was also found in localized skin regions.

Conclusions

The study demonstrates that the physicochemical properties of dendrimers influence their skin transport. Findings can be used to design dendrimer-based nanocarriers for drug delivery to skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51:702–47.

    PubMed  CAS  Google Scholar 

  2. Downing DT. Lipid and protein structure in the permeability barrier of mammalian epidermis. J Lipid Res. 1992;33:301–13.

    PubMed  CAS  Google Scholar 

  3. Naik A, Kalia YN, Guy RH. Trbansdermal drug delivery: overcoming skin’s barrier function. Pharm Sci Technol Today. 2000;3:318–26.

    Article  PubMed  CAS  Google Scholar 

  4. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24.

    Article  PubMed  CAS  Google Scholar 

  5. Venuganti VK, Perumal OP. Nanosystems for dermal and transdermal drug delivery. In: Pathak Y, Thassu D, editors. Nanoparticulate drug delivery systems: formulation and characterization. New York: Informa Health; 2009. p. 124–53.

    Google Scholar 

  6. Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141:277–99.

    Article  PubMed  CAS  Google Scholar 

  7. Esfand R, Tomalia DA. Poly (amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6:427–36.

    Article  PubMed  CAS  Google Scholar 

  8. Kannan RM, Perumal O, Kannan S. Dendrimers and hyperbranched polymers in drug delivery. In: Labhateswar V, Pelecky L, editors. Biomedical applications of nanotechnology. New Jersey: Wiley; 2005. p. 105–30.

    Google Scholar 

  9. Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed. 1998;37:2754–94.

    Article  Google Scholar 

  10. El-Sayed M, Ginski M, Rhodes C, Ghandehari H. Transepithelial transport of poly (amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release. 2002;81:355–65.

    Article  PubMed  CAS  Google Scholar 

  11. Bai S, Ahsan F. Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm Res. 2009;26:539–48.

    Article  PubMed  CAS  Google Scholar 

  12. Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102:23–38.

    Article  PubMed  CAS  Google Scholar 

  13. Menjoge AR, Navath RS, Asad A, Kannan S, Kim CJ. Transport and biodistribution of dendrimers across human fetal membrane: implications for intravaginal administration of dendrimer-drug conjugates. Biomaterials. 2010;31:5007–21.

    Article  PubMed  CAS  Google Scholar 

  14. Kitchens KM, Kolhatkar RB, Swaan PW, Eddington NW, Ghandehari H. Transport of poly (amidoamine) dendrimers across caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm Res. 2006;23:2818–26.

    Article  PubMed  CAS  Google Scholar 

  15. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labeled polyamidoamine dendrimers in vivo. J Control Release. 2000;65:133–48.

    Article  PubMed  CAS  Google Scholar 

  16. El-Sayed M, Kiani MF, Naimark MD, Hikal AH, Ghandehari H. Extravasation of poly(amidoamine) (PAMAM) dendrimer across microvascular network endothelium. Pharm Res. 2001;18:23–8.

    Article  PubMed  CAS  Google Scholar 

  17. Dufe’s C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57:2177–202.

    Article  Google Scholar 

  18. Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, et al. Dendrimer mediated transdermal delivery: Enhanced bioavailability of indomethacin. J Control Release. 2003;90:335–43.

    Article  PubMed  CAS  Google Scholar 

  19. Venuganti VK, Perumal OP. Effect of poly(amidoamine) PAMAM dendrimer on the skin permeation of 5-fluorouracil. Int J Pharm. 2008;361:230–8.

    Article  PubMed  CAS  Google Scholar 

  20. Venuganti VK, Perumal OP. Poly(amidoamine) dendrimers as skin penetration enhancers: Influence of charge, generation and concentration. J Pharm Sci. 2009;98:2345–56.

    Article  PubMed  CAS  Google Scholar 

  21. Kalia YN, Naik A, Garrison J, Guy RH. Iontophoretic drug delivery. Adv Drug Deliv Rev. 2004;56:619–58.

    Article  PubMed  CAS  Google Scholar 

  22. Jacobi U, Kaiser M, Toll R, Mangelsdorf S, Audring H, Otberg N, et al. Porcine ear skin, an in vitro model for human skin. Skin Res Technol. 2007;31:19–24.

    Article  Google Scholar 

  23. Jevprasesphant R, Penny J, Attwood D, McKeown NB, D’Emanuele A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res. 2003;20:1543–50.

    Article  PubMed  CAS  Google Scholar 

  24. Kalia YN, Pirot F, Guy RH. Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo. Biophysical J. 1996;71:2692–700.

    Article  CAS  Google Scholar 

  25. Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, et al. Dendritic chelating agents. 1. Cu(II) binding to ethylenediamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir. 2004;20:2640–51.

    Article  PubMed  CAS  Google Scholar 

  26. Rastogi SK, Singh J. Lipid extraction and transport of hydrophilic solutes through porcine epidermis. Int J Pharm. 2001;225:75–82.

    Article  PubMed  CAS  Google Scholar 

  27. Turner NG, Ferry L, Price M, Cullander C, Guy RH. Iontophoresis of poly-L-lysines: The role of molecular weight? Pharm Res. 1997;14:1322–133.

    Article  PubMed  CAS  Google Scholar 

  28. Do JH, Joun YS, Chung DJ. Cellular-uptake behavior of polymer nanoparticles into consideration of biosafety. Macromol Res. 2008;16:695–703.

    Article  CAS  Google Scholar 

  29. Oh J, Choi S, Lee G, Kim J, Choy J. Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin mediated endocytosis. Chem Asian J. 2009;4:67–73.

    Article  PubMed  CAS  Google Scholar 

  30. Lee JH, Lim Y, Choi S, Lee Y, Kim T, Kim HJ, et al. Polyplexes assembled with internally quartnized PAMAM-OH dendrimer and plasmid DNA have a neutral surface charge and gene delivery potency. Bioconjugate Chem. 2003;14:1214–21.

    Article  CAS  Google Scholar 

  31. Nuha P, Davoren M, Lyng FM, Byrne HJ. Reactive oxygen species induced cytokine production and cytotoxicity of PAMAM dendrimers in J774a.1 cells. Toxicol Appl Pharmacol. 2010;246:91–9.

    Article  Google Scholar 

  32. Alvarez-Roman R, Naik A, Kalia YN, Fessi H, Guy RH. Visualization of skin penetration using confocal laser scanning microscopy. Eur J Pharm Biopharm. 2004;58:301–16.

    Article  PubMed  CAS  Google Scholar 

  33. Dubey S, Kalia YN. Non-invasive iontophoretic delivery of enzymatically active ribonuclease A (13.6 kDa) across intact porcine and human skins. J Control Release. 2010;145:203–9.

    Article  PubMed  CAS  Google Scholar 

  34. Brus C, Santi P, Colombo P, Kissel T. Distribution and quantification of polyethyleneimine oligodeoxyneclotide complexes in human skin after iontophoretic delivery using confocal scanning laser microscopy. J Control Release. 2002;84:171–81.

    Article  PubMed  CAS  Google Scholar 

  35. Burnette RR, Ongpipattanakul B. Characterization of the permselective properties of excised human skin during iontophoresis. J Pharm Sci. 1987;76:765–73.

    Article  PubMed  CAS  Google Scholar 

  36. Schuetz YB, Carrupt PA, Naik A, Guy RH, Kalia YN. Structure-permeation relationships for the non-invasive transdermal delivery of cationic peptides by iontophoresis. Eur J Pharm Sci. 2006;29:53–9.

    Article  PubMed  CAS  Google Scholar 

  37. Wu X, Landfester K, Musyanovych A, Guy RH. Disposition of charged nanoparticles after their topical application to the skin. Skin Pharmacol Physiol. 2010;23:117–23.

    Article  PubMed  CAS  Google Scholar 

  38. Perumal OP, Inapagolla R, Kannan S, Kannan RM. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials. 2008;29:3469–76.

    Article  PubMed  CAS  Google Scholar 

  39. Marro D, Guy RH, Delgado-Charro MB. Characterization of the iontophoretic permselectivity properties of human and pig skin. J Control Release. 2001;70:213–7.

    Article  PubMed  CAS  Google Scholar 

  40. Guy RH, Kalia YN, Delgado-Charro MB, Merino V, Lopez A, Marro D. Iontophoresis: electrorepulsion and electroosmosis. J Control Release. 2000;64:129–32.

    Article  PubMed  CAS  Google Scholar 

  41. Ruddy SB, Hadzija BW. Iontophoretic permeability of polyethylene glycols through hairless rat skin: application of hydrodynamic theory for hindered transport through liquid-filled pores. Drug Des Discov. 1992;8:207–24.

    PubMed  CAS  Google Scholar 

  42. Pikal MJ, Shah S. Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes. Pharm Res. 1990;7:222–9.

    Article  PubMed  CAS  Google Scholar 

  43. Pillai O, Kumar N, Dey CS, Borkute, Sivaprasad N, Panchagnula R. Transdermal iontophoresis of insulin: III. Influence of electronic parameters. Methods Find Exp Clin Pharmacol. 2004;26:399–408.

    PubMed  CAS  Google Scholar 

  44. Cazares-Delgadillo J, Naik A, Ganem-Rondero A, Quintanar-Guerrero D, Kalia YN. Transdermal delivery of cytochrome-c, a 12–4 kDa protein across intact skin by constant current iontophoresis. Pharm Res. 2007;24:1360–8.

    Article  PubMed  CAS  Google Scholar 

  45. Kasting GB, Keister JC. Applications of electrodiffusion theory for a homogenous membrane to iontophoretic transport through skin. J Control Release. 1989;8:195–210.

    Article  CAS  Google Scholar 

  46. Hirvonen J, Guy RH. Transdermal iontophoresis: modulation of electroosmosis by polypeptides. J Control Release. 1998;50:283–9.

    Article  PubMed  Google Scholar 

  47. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–9.

    Article  PubMed  CAS  Google Scholar 

  48. Abla N, Naik A, Guy RH, Kalia YN. Effect of charge and molecular weight on transdermal peptide delivery by iontophoresis. Pharm Res. 2005;22:2069–78.

    Article  PubMed  CAS  Google Scholar 

  49. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99:53–62.

    Article  PubMed  CAS  Google Scholar 

  50. Prausnitz MR, Gimm JA, Guy RH, Langer R, Weaver JC, Cullander C. Imaging regions of transport across human stratum corneum during high-voltage and low-voltage exposures. J Pharm Sci. 1996;85:1363–70.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Kelly Bruns and Mr. Adam Rhody, Meat Science Department, SDSU for providing porcine skin.This work was supported by South Dakota Governor Round’s 2010 individual research seed grant and Department of Pharmaceutical Sciences, South Dakota State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omathanu Perumal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Representative 1H-NMR spectra of G4-NH2, free FITC and G4-NH2-FITC conjugate. Dotted line corresponds to aromatic protons of FITC (6 to 8 ppm), and solid circle corresponds to aliphatic protons in the dendrimer (2 to 4 ppm). (DOCX 158 kb)

Fig. S2

Representative UV-Visible absorbance spectra of G4-NH2dendrimer-FITC conjugate, free FITC and free dendrimer. The λmax for free FITC was495 nm, while the λmax shifted to 500 nm for G4-NH2dendrimer-FITC conjugate. (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venuganti, V.V., Sahdev, P., Hildreth, M. et al. Structure-Skin Permeability Relationship of Dendrimers. Pharm Res 28, 2246–2260 (2011). https://doi.org/10.1007/s11095-011-0455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0455-0

KEY WORDS

Navigation