Skip to main content

Advertisement

Log in

Genetically Engineered Block Copolymers: Influence of the Length and Structure of the Coiled-Coil Blocks on Hydrogel Self-Assembly

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To explore the relationship between the structure of block polypeptides and their self-assembly into hydrogels. To investigate structural parameters that influence hydrogel formation and physical properties.

Methods

Three ABA triblock and two AB diblock coiled-coil containing polypeptides were designed and biologically synthesized. The triblock polypeptides had two terminal coiled-coil (A) domains and a central random coil (B) segment. The coiled-coil domains were different in their lengths, and tyrosine residues were incorporated at selected solvent-exposed positions in order to increase the overall hydrophobicity of the coiled-coil domains. The secondary structures of these polypeptides were characterized by circular dichroism and analytical ultracentrifugation. The formation of hydrogel structures was evaluated by microrheology and scanning electron microscopy.

Results

Hydrogels self-assembled from the triblock polypeptides, and had interconnected network microstructures. Hydrogel formation was reversible. Denaturation of coiled-coil domains by guanidine hydrochloride (GdnHCl) resulted in disassembly of the hydrogels. Removal of GdnHCl by dialysis caused coiled-coil refolding and hydrogel reassembly.

Conclusions

Protein ABA triblock polypeptides composed of a central random block flanked by two coiled-coil forming sequences self-assembled into hydrogels. Hydrogel formation and physical properties may be manipulated by choosing the structure and changing the length of the coiled-coil blocks. These self-assembling systems have a potential as in-situ forming depots for protein delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Tae, J. A. Kornfield, and J. A. Hubbell. Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended poly(ethylene glycol). Biomaterials 26:5259–5266 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. E. Ruel-Gariépy and J. C. Leroux. In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58:409–426 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. E. Behravesh, K. Zygourakis, and A. G. Mikos. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J. Biomed. Mater. Res. A 65:260–270 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. B. Balakrishnan and A. Jayakrishnan. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26:3941–3951 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. A. Motulsky, M. Lafleur, A. C. Couffin-Hoarau, D. Hoarau, F. Boury, J. P. Benoit, and J. C. Leroux. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants. Biomaterials 26:6242–6253 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. L. Zhang, E. M. Furst, and K. L. Kiick. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide–polysaccharide interactions. J. Control. Release 114:130–142 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. C. Wang, R. J. Stewart, and J. Kopeček. Hybrid hydrogels self-assembled from synthetic polymers and coiled-coil domains. Nature 397:417–420 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. J. Kopeček, A. Tang, C. Wang, and R. J. Stewart. De novo design of biomedical polymers: Hybrids from synthetic macromolecules and genetically engineered protein domains. Macromol. Symp. 174:31–42 (2001).

    Article  Google Scholar 

  9. C. Wang, J. Kopeček, and R. J. Stewart. Hybrid hydrogels crosslinked by genetically engineered coiled-coil block proteins. Biomacromolecules 2:912–920 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. J. Yang, C. Xu, P. Kopeèková, and J. Kopeček. Hybrid hydrogels self-assembled from HPMA copolymers containing peptide grafts. Macromol. Biosci. 6:201–209 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. J. Yang, C. Xu, C. Wang, and J. Kopeček. Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. Biomacromolecules 7:1187–1195 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. C. Xu and J. Kopeček. Self-assembling hydrogels. Polym. Bull. 58:53–63 (2007).

    Article  CAS  Google Scholar 

  13. Y. B. Yu. Coiled-coils: stability, specificity, and drug delivery potential. Adv. Drug Deliv. Rev. 54:1113–1129 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. W. A. Petka, J. L. Harden, K. P. McGrath, D. Wirtz, and D. A. Tirrell. Reversible hydrogels from self-assembling artificial proteins. Science 281:389–392 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. C. Xu, V. Breedveld, and J. Kopeček. Reversible hydrogels from self-assembling genetically engineered protein block copolymers. Biomacromolecules 6:1739–1749 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. L. Serrano, M. Bycroft, and A. R. Fersht. Aromatic–aromatic interactions and protein stability. Investigation by double-mutant cycles. J. Mol. Biol. 218:465–475 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. F. Schafer, D. Deluca, U. Majdic, J. Kirchner, M. Schliwa, L. Moroder, and G. Woehlke. A conserved tyrosine in the neck of a fungal kinesin regulates the catalytic motor core. EMBO J. 22:450–458 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. S. Adio, J. Reth, F. Bathe, and G. Woehlke. Review: regulation mechanisms of kinesin-1. J. Muscle Res. Cell Motil. 27:153–160 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. S. R. Campion, R. K. Matsunami, D. A. Engler, and S. K. Niyogi. Biochemical properties of site-directed mutants of human epidermal growth factor: importance of solvent-exposed hydrophobic residues of the amino-terminal domain in receptor binding. Biochemistry 29:9988–9993 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. M. Walther, R. Wiesner, and H. Kuhn. Investigations into calcium-dependent membrane association of 15-lipoxygenase-1. Mechanistic roles of surface-exposed hydrophobic amino acids and calcium. J. Biol. Chem. 279:3717–3725 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. E. Hochuli. Purification of recombinant proteins with metal chelate adsorbent. Genet. Eng. (N Y) 12:87–98 (1990).

    CAS  Google Scholar 

  22. C. R. Cantor and P. R. Schimmel. Biophysical Chemistry, W. H. Freeman and Company, New York, 1980.

    Google Scholar 

  23. D. A. Yphantis. Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3:297–317 (1964).

    Article  PubMed  CAS  Google Scholar 

  24. M. L. Johnson, J. J. Correia, D. A. Ypahantis, and H. R. Halvorson. Analysis of data from the analytical ultracentrifuge by non-linear least squares techniques. Biophys. J. 36:575–588 (1981).

    PubMed  CAS  Google Scholar 

  25. T. M. Laue, B. D. Shah, T. M. Ridgeway, and S. L. Pelletier. Computer aided interpretation of analytical sedimentation data for proteins. In S. E. Harding, A. J. Rowe, and J. C. Horton (eds.), Ultracentrifugation in Biochemistry and Polymer Science, The Royal Society of Chemistry, Cambridge, 1992, pp. 90–125.

    Google Scholar 

  26. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz. Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85:888–891 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. P. B. Harbury, T. Zhang, P. S. Kim, and T. Alber. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401–1407 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. J. Y. Su, R. S. Hodges, and C. M. Kay. Effect of chain length on the formation and stability of synthetic alpha-helical coiled coils. Biochemistry 33:15501–15510 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. J. C. Crocker and D. G. Grier. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179:298–310 (1996).

    Article  CAS  Google Scholar 

  30. T. G. Mason and D. A. Weitz. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74:1250–1253 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. F. C. MacKintosh and C. F. Schmidt. Microrheology. Curr. Opin. Colloid Interface Sci. 4:300–307 (1999).

    Article  CAS  Google Scholar 

  32. W. Shen, K. Zhang, J. A. Kornfield, and D. A. Tirrell. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat. Mater. 5:153–158 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. K. Wagschal, B. Tripet, and R. S. Hodges. De novo design of a model peptide sequence to examine the effects of single amino acid substitutions in the hydrophobic core on both stability and oligomerization state of coiled-coils. J. Mol. Biol. 285:785–803 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. K. Wagschal, B. Tripet, P. Lavigne, C. Mant, and R. S. Hodges. The role of position a in determining the stability and oligomerization state of alpha-helical coiled-coils: 20 amino acid stability coefficients in the hydrophobic core of proteins. Protein Sci. 8:2312–2329 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. B. Tripet, K. Wagschal, P. Lavigne, C. Mant, and R. S. Hodges. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position “d”. J. Mol. Biol. 300:377–402 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. A. E. Keating, V. N. Malashkevich, B. Tidor, and P. S. Kim. Side-chain repacking calculations for predicting structures and stabilities of heterodimeric coiled coils. Proc. Natl. Acad. Sci. U. S. A. 98:14825–14830 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. J. Kopeček. Swell gels. Nature 417:388–391 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Bruce Yu and Jiyuan Yang for valuable discussions, Dr. David Tirrell for the kind gift of plasmid pUC18-RC, and Jon Callahan for critical reading of the manuscript. The research was supported in part by NIH grant EB005288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindřich Kopeček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Kopeček, J. Genetically Engineered Block Copolymers: Influence of the Length and Structure of the Coiled-Coil Blocks on Hydrogel Self-Assembly. Pharm Res 25, 674–682 (2008). https://doi.org/10.1007/s11095-007-9343-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9343-z

Key words

Navigation