Skip to main content
Log in

Development and Validation of a Physiology-based Model for the Prediction of Oral Absorption in Monkeys

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The development and validation of a physiology-based absorption model for orally administered drugs in monkeys is described.

Materials and Methods

Physiological parameters affecting intestinal transit and absorption of an orally administered drug in monkeys have been collected from the literature and implemented in a physiological model for passive absorption previously developed for rats and humans. Predicted fractions of dose absorbed have been compared to experimentally observed values for a set of N = 37 chemically diverse drugs. A sensitivity analysis was performed to assess the influence of various physiological model parameters on the predicted fraction dose absorbed.

Results

A Pearson’s correlation coefficient of 0.94 (95% confidence interval: [0.88, 0.97]; p < 0.0001) between the predicted and observed fraction dose absorbed in monkeys was obtained for compounds undergoing non-solubility limited passive absorption (N = 29). The sensitivity analysis revealed that the predictions of fractions dose absorbed in monkeys are very sensitive with respect to inter-individual variations of the small intestinal transit time.

Conclusions

The model is well suited to predict the fraction dose absorbed of passively absorbed compounds after oral administration and to assess the influence of inter-individual physiological variability on oral absorption in monkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Ikegami, K. Tagawa, S. Narisawa, and T.Osawa. Suitability of the cynomolgus monkey as an animal model for drug absorption studies of oral dosage forms from the viewpoint of gastrointestinal physiology. Biol. Pharm. Bull. 26:1442–1447 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. W. L. Chiou, and P. W. Buehler. Comparison of oral absorption and bioavailablity of drugs between monkey and human. Pharm. Res. 19:868–874 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. L. L. de Zwart, C. J. M. Rompelberg, A. J. A. M. Sips, J. Welink, and J. G. M. van Engelen. Anatomical and physiological differences between various species used in studies on the pharmacokinetics and toxicology of xenobiotics. A review of the literature. 1999. Report No.: National Institute of Public Health and the Environment. RIVM report 623860 010.

  4. J. B. Dressman and K. Yamada. Animal models for oral drug absorption. In N. Y. N. Dekker (ed.), Drugs Pharm. Sci. 48:235–266 (1991).

  5. T. T. Kararli. Comparison of the gastrointestinal anatomy, physiology, and, biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16:351–380 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. S. Willmann, W. Schmitt, J. Keldenich, and J. B. Dressman. A physiologic model for simulating gastrointestinal flow and drug absorption in rats. Pharm. Res. 20:1766–1771 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. S. Willmann, W. Schmitt, J. Keldenich, J. Lippert, and J. B. Dressman. A physiological model for the estimation of the fraction dose absorbed in humans. J. Med. Chem. 47:4022–4031 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. S. Willmann, J. Lippert, and W. Schmitt. From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opin. Drug Meta. Toxicol. 1:159–168 (2005).

    Article  CAS  Google Scholar 

  9. S. Willmann, J. Lippert, M. Sevestre, J. Solodenko, F. Fois, and W. Schmitt. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico. 1:121–124 (2003).

    Article  CAS  Google Scholar 

  10. T. Sawamoto, S. Haruta, Y. Kurosaki, K. Higaki, and T. Kimura. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J. Pharm. Pharmacol. 49:450–457 (1997).

    PubMed  CAS  Google Scholar 

  11. D. E. Leahy. Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: octanol-water partition coefficients and aqueous solubilities. J. Pharm. Sci. 75:629–636 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. A. Loidl-Stahlhofen, A. Eckert, T. Hartmann, and M. Schottner. Solid-supported lipid membranes as a tool for determination of membrane affinity: high-throughput screening of a physicochemical parameter. J. Pharm. Sci. 90:599–606 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. A. Loidl-Stahlhofen, T. Hartmann, M. Schottner, C. Rohring, H. Brodowsky, J. Schmitt, et al. Multilamellar liposomes and solid-supported lipid membranes (TRANSIL): screening of lipid-water partitioning toward a high-throughput scale. Pharm. Res. 18:1782–1788 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. F. A. Gobas, J. M. Lahittete, G. Garofalo, W. Y. Shiu, and D. Mackay. A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicals: comparison with 1-octanol-water partitioning. J. Pharm. Sci. 77:265–272 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. T. Makita, T. Anjiki, H. Goto, K. Hakoi, K. Hirabara, T. Ishida, et al. Body and organ weights and the length of intestine of japanese monkey (Macaca Fuscata) II. Yamaguchi J. Vet. Med. 12:97–100 (1985).

    Google Scholar 

  16. Reynolds DG, Brim J, and Sheehy TW. The vascular architecture of the small intestinal mucosa of the monkey (Macaca mulatta). Anat. Rec. 159:211–218 (1967).

    Article  PubMed  CAS  Google Scholar 

  17. D. T. Moran and J. C. Rowley III. Visual Histology. [cited Jun 10, 2006], Available from: http://www.visualhistology.com.

  18. G. M. Grass, and S. A. Sweetana. A correlation of permeabilities for passively transported compounds in monkey and rabbit jejunum. Pharm. Res. 6:857–862 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. ICRP. Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. Elsevier Science Amsterdam, The Netherlands, 2002.

    Google Scholar 

  20. H. Kondo, T. Shinoda, H. Nakashima, T. Watanabe, and S. Yokohama. Characteristics of the gastric pH profiles of unfed and fed cynomolgus monkeys as pharmaceutical product development subjects. Biopharm. Drug Dispos. 24:45–51 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. H. Kondo, T. Watanabe, S. Yokohama, and J. Watanabe. Effect of food on gastrointestinal transit of liquids in cynomolgus monkeys. Biopharm. Drug Dispos. 24:141–151 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. L. Kalantzi, K. Goumas, V. Kalioras, B. Abrahamsson, J. B. Dressman, and C. Reppas. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm. Res. 23:165–176 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. H. M. Siefert, D. Maruhn, W. Maul, D. Forster, and W. Ritter. Pharmacokinetics of ciprofloxacin. 1st communication: absorption, concentrations in plasma, metabolism and excretion after a single administration of [14C]ciprofloxacin in albino rats and rhesus monkeys. Arzneimittelforschung. 36:1496–1502 (1986).

    PubMed  CAS  Google Scholar 

  24. M. Hu, and G. L. Amidon. Passive and carrier-mediated intestinal absorption components of captopril. J. Pharm. Sci. 77:1007–1011 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. P. J. Sinko, and P. V. Balimane. Carrier-mediated intestinal absorption of valacyclovir, the L-valyl ester prodrug of acyclovir: 1. Interactions with peptides, organic anions and organic cations in rats. Biopharm. Drug Dispos. 19:209–217 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. H. Han, R. L. de Vrueh, J. K. Rhie, K. M. Covitz, P. L. Smith, C. P. Lee, et al. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res. 15:1154–1159 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. S. Vautier, L. Lacomblez, H. Chacun, V. Picard, F. Gimenez, R. Farinotti, et al. Interactions between the dopamine agonist, bromocriptine and the efflux protein, P-glycoprotein at the blood-brain barrier in the mouse. Eur. J. Pharm. Sci. 27:167–174 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34:D668–D672 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. S. Rendic. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab. Rev. 34:83–448 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. K. Obata, K. Sugano, R. Saitoh, A. Higashida, Y. Nabuchi, M. Machida, et al. Prediction of oral drug absorption in humans by theoretical passive absorption model. Int. J. Pharm. 293:183–192 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Y. L. He, S. Murby, L. Gifford, A. Collett, G. Warhurst, K. T. Douglas, et al. Oral absorption of D-oligopeptides in rats via the paracellular route. Pharm. Res. 13:1673–1678 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. J. H. Lin. Bisphosphonates: a review of their pharmacokinetic properties. Bone. 18:75–85 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. M. S. Barnette, C. D. Manning, W. J. Price, and F. C. Barone. Initial biochemical and functional characterization of cyclic nucleotide phosphodiesterase isozymes in canine colonic smooth muscle. J. Pharmacol. Exp. Ther. 264:801–812 (1993).

    PubMed  CAS  Google Scholar 

  34. T. Prueksaritanont, L. M. Gorham, J. H. Hochman, L. O. Tran, and K. P. Vyas. Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab. Dispos. 24:634–642 (1996).

    PubMed  CAS  Google Scholar 

  35. K. W. Ward, G. J. Stelman, J. A. Morgan, K. S. Zeigler, L. M. Azzarano, J. R. Kehler, et al. Development of an in vivo preclinical screen model to estimate absorption and first-pass hepatic extraction of xenobiotics. II. Use of ketoconazole to identify P-glycoprotein/CYP3A-limited bioavailability in the monkey. Drug Metab. Dispos. 32:172–177 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. NIAID. Chemical/Therapeutics Classes. National Institute of Allergy and Infectious Diseases, National Institute of Health, USA [cited Mar 6, 2006], Available from: http://chemdb.niaid.nih.gov/struct_search/class_search.asp.

  37. T. S. Wiedmann, R. Bhatia, and L. W. Wattenberg. Drug solubilization in lung surfactant. J. Control. Release 65:43–47 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. A. Dobashi. 3DPSD. Department of Pharmaceutical Information Science, School of Pharmacy, Tokyo University of Pharmacy and Life Science. [cited Mar 6, 2006]; Available from: http://www.pharmis.org.

  39. S. Ruggieri, F. Stocchi, A. Carta, D. Bravi, M. Bragoni, L. Giorgi, et al. Comparison between L-dopa and lisuride intravenous infusions: a clinical study. Mov. Disord. 3:313–319 (1988).

    Article  PubMed  CAS  Google Scholar 

  40. NCI. National Cancer Institute of Frederick, National Institute of Health, MD, USA. [cited Mar 6, 2006], Available from: http://dtpws4.ncifcrf.gov/DATA/PHARM_DATA/269148.HTML.

  41. European Medicines Agency. European Public Assessment Report: Scientific Discussion, Irbesartan. [cited Mar 6, 2006], Available from: http://www.emea.eu int/humandocs/Humans/EPAR/karvea/karvea.htm.

  42. Sigma-Aldrich. R6520 Rolipram. [Cited Mar 6, 2006], Available from: http://www.sigmaaldrich.com.

  43. Food & Drug Administration. Valtrex Product Information 2001, USA, [Cited Mar 6, 2006], Available from: http://www.fda.gov/cder/foi/label/2001/20550s12lbl.pdf.

  44. E. Deretey, M. Feher, and J. M. Schmidt. Rapid prediction of human intestinal absorption. Quant. Struct.-Act. Relatsh. 21:493–506 (2002).

    Article  CAS  Google Scholar 

  45. TerraBase Inc. TerraQSAR-LOGP™ computed octanol/water partition coefficients (CLOGPs). [Cited Mar 6, 2006], Available from: http://www.terrabase-inc.com/anti-inflamms.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Willmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willmann, S., Edginton, A.N. & Dressman, J.B. Development and Validation of a Physiology-based Model for the Prediction of Oral Absorption in Monkeys. Pharm Res 24, 1275–1282 (2007). https://doi.org/10.1007/s11095-007-9247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9247-y

Key words

Navigation