Skip to main content
Log in

Evaluation and Optimization of the Conditions for an Improved Ferulic Acid Intercalation into a Synthetic Lamellar Anionic Clay

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim of the study is to optimize the intercalation conditions of ferulic acid (FERH), an antioxidant compound, into Mg–Al–hydrotalcite for a safe skin photoprotection.

Methods

The intercalation products were prepared incubating hydrotalcite (HTlc) in aqueous solutions of FERH sodium salt at different temperatures over 4 and 8 days. Quantitative determination of intercalated FERH was performed by thermogravimetric analysis and morphology by scanning electron microscopy (SEM). FERH stability study was carried out at different pHs and temperatures. FERH was analyzed by reversed phase–high-performance liquid chromatography. Response surface methods (RSMs) were used to assess optimal intercalation conditions and FERH stability.

Results

In all intercalation products, FERH content was found to be about 48% w/w except when the intercalation process was carried out at 52°C for 8 days and at 60°C for both 4 and 8 days, which resulted to be 40.39, 39.99, and 34.99%, respectively. The RSM designs showed that intercalation improvement can be achieved by working at pH 6, at temperatures below 40°C, and over 4 days of incubation.

Conclusions

The optimal conditions for a proper FERH intercalation were assessed. The development of a new optimized protocol may improve HTlc–FER complex performances and safety by augmenting dosage and reducing the presence of harmful reactive species in the final formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Wei Y. W. Shiow (2001) ArticleTitleAntioxidant activity and phenolic compounds in selected herbs J. Agric. Food Chem. 49 5165–5170 Occurrence Handle10.1021/jf010325e Occurrence Handle1:CAS:528:DC%2BD3MXltF2ksb8%3D

    Article  CAS  Google Scholar 

  2. M. Lodovici F. Guglielmi M. Meoni P. Dolora (2001) ArticleTitleEffect of natural phenolic acids on DNA oxidation in vitro Food Chem. Toxicol. 39 1205–1210 Occurrence Handle1:CAS:528:DC%2BD3MXotFSnsbo%3D Occurrence Handle11696394

    CAS  PubMed  Google Scholar 

  3. H. S. Ju X. J. Li B. L. Zhao J. W. Hou Z. W. Han W. J. Xin (1990) ArticleTitleScavenging effects of sodium ferulate and 18 h-glycyrrhetic acid on oxygen free radicals Acta Pharmacol. Sin. 11 466–470 Occurrence Handle1:CAS:528:DyaK3cXlvVCltbY%3D

    CAS  Google Scholar 

  4. A. Saija A. Tomaino R. LoCascio D. Trombetta A. Proteggente A. Pasquale ParticleDe N. Uccella F. Bonina (1999) ArticleTitleFerulic and caffeic acids as potential protective agents against photooxidative skin damage J. Sci. Food Agric. 79 476–480 Occurrence Handle1:CAS:528:DyaK1MXitlOltL8%3D

    CAS  Google Scholar 

  5. E. Graf (1992) ArticleTitleAntioxidant potential of ferulic acid Free Radic. Biol. Med. 13 435–448 Occurrence Handle10.1016/0891-5849(92)90184-I Occurrence Handle1:CAS:528:DyaK38XmsVCrtLs%3D Occurrence Handle1398220

    Article  CAS  PubMed  Google Scholar 

  6. C. Rossi A. Schoubben M. Ricci L. Perioli V. Ambrogi L. Zatterini G. G. Aloisi A. Rossi (2005) ArticleTitleIntercalation of the radical scavenger ferulic acid in hydrotalcite-like anionic clays Int. J. Pharm. 295 47–55 Occurrence Handle10.1016/j.ijpharm.2005.01.040 Occurrence Handle1:CAS:528:DC%2BD2MXjtl2rs70%3D Occurrence Handle15847990

    Article  CAS  PubMed  Google Scholar 

  7. U. Costantino F. Marmottini M. Nocchetti R. Vivani (1998) ArticleTitleNew synthetic routes to hydrotalcite-like compounds—characterisation and properties of the obtained materials Eur. J. Inorg. Chem. 10 1439–1446

    Google Scholar 

  8. D. Kishore S. Kannan (2004) ArticleTitleEnvironmentally benign route for isomerization of safrole–hydrotalcite as solid base catalyst J. Mol. Catal., A Chem. 223 225–230 Occurrence Handle1:CAS:528:DC%2BD2cXpt1WmsLo%3D Occurrence Handle10.1016/j.molcata.2003.09.044

    Article  CAS  Google Scholar 

  9. S. Narayanan K. Krishna (1996) ArticleTitleHighly active hydrotalcite supported palladium catalyst for selective synthesis of cyclohexanone from phenol Appl. Catal., A Gen. 147 1253–1258 Occurrence Handle10.1016/S0926-860X(96)00298-0

    Article  Google Scholar 

  10. J. Orthman H. Y. Zhu G. Q. Lu (2003) ArticleTitleUse of anion clay hydrotalcite to remove coloured organics from aqueous solutions Sep. Purif. Technol. 31 53–59 Occurrence Handle10.1016/S1383-5866(02)00158-2 Occurrence Handle1:CAS:528:DC%2BD3sXhs1Cktr0%3D

    Article  CAS  Google Scholar 

  11. S.-Y. Kwak W. M. Kriven M. A. Wallig J.-H. Choy (2004) ArticleTitleInorganic delivery vector for intravenous injection Biomaterials 25 5995–6001 Occurrence Handle10.1016/j.biomaterials.2004.01.056 Occurrence Handle1:CAS:528:DC%2BD2cXksFKhs70%3D Occurrence Handle15183614

    Article  CAS  PubMed  Google Scholar 

  12. V. Ambrogi G. Fardella G. Grandolini L. Perioli M. C. Tiralti (2002) ArticleTitleIntercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents. II: Uptake of diclofenac for a controlled release formulation AAPS PharmSciTech 3 E26 Occurrence Handle10.1208/pt030326 Occurrence Handle12916941

    Article  PubMed  Google Scholar 

  13. A. Xu, H. Qi, and W. Shieh. Preparation of stabilized cyclodextrin complexes. U.S. Patent No. 99,172,099 (2001).

  14. B. Karmakar R. M. Vohra H. Nandanwar P. Sharma K. G. Gupta R. C. Sobti (2000) ArticleTitleRapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans J. Biotechnol. 80 195–202 Occurrence Handle10.1016/S0168-1656(00)00248-0 Occurrence Handle1:CAS:528:DC%2BD3cXls12rsLc%3D Occurrence Handle10949310

    Article  CAS  PubMed  Google Scholar 

  15. U. Krings S. Pilawa C. Theobald R. G. Berger (2001) ArticleTitlePhenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus—elucidation of metabolic pathways using [5-2H]-ferulic acid J. Biotechnol. 85 305–314 Occurrence Handle10.1016/S0168-1656(00)00396-5 Occurrence Handle1:CAS:528:DC%2BD3MXhtFaqsLc%3D Occurrence Handle11173097

    Article  CAS  PubMed  Google Scholar 

  16. M. Brunati F. Marinelli C. Bertolini R. Gandolfi D. Daffonchio F. Molinari (2004) ArticleTitleBiotransformations of cinnamic and ferulic acid with actinomycetes Enzyme Microb. Technol. 34 3–9 Occurrence Handle10.1016/j.enzmictec.2003.04.001 Occurrence Handle1:CAS:528:DC%2BD3sXps1Olt7s%3D

    Article  CAS  Google Scholar 

  17. I. McMurrough D. Madigan D. Donnely J. Hurley A. M. Doyle G. Hennigan N. McNultly M. R. Smyth (1996) ArticleTitleControl of ferulic acid and 4-vinyl guaiacol in brewing J. Inst. Brew. 102 327–332 Occurrence Handle1:CAS:528:DyaK28XmsFCjtLk%3D

    CAS  Google Scholar 

  18. G. P. Rizzi L. J. Boekley (1992) ArticleTitleObservation of ether-linked phenolic products during thermal degradation of ferulic acid in the presence of alcohols J. Agric. Food Chem. 40 1666–1670 Occurrence Handle10.1021/jf00021a037 Occurrence Handle1:CAS:528:DyaK38XlsV2lsbw%3D

    Article  CAS  Google Scholar 

  19. S. Coghe K. Benoot F. Delvaux B. Verhaegen F. R. Delvaux (2004) ArticleTitleFerulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae J. Agric. Food Chem. 52 602–608 Occurrence Handle1:CAS:528:DC%2BD2cXitFOguw%3D%3D Occurrence Handle14759156

    CAS  PubMed  Google Scholar 

  20. R. Dorfner T. Ferge A. Kettrup R. Zimmermann C. Yeretzian (2003) ArticleTitleReal-time monitoring of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting by resonant laser ionization time-of-flight mass spectrometry J. Agric. Food Chem. 51 5768–5773 Occurrence Handle10.1021/jf0341767 Occurrence Handle1:CAS:528:DC%2BD3sXmtVKntbs%3D Occurrence Handle12952431

    Article  CAS  PubMed  Google Scholar 

  21. G. X. Pan L. Spencer G. J. Leary (1999) ArticleTitleReactivity of ferulic acid and its derivatives toward hydrogen peroxide and peracetic acid J. Agric. Food Chem. 47 3325–3331 Occurrence Handle10.1021/jf9902494 Occurrence Handle1:CAS:528:DyaK1MXktlKkur0%3D Occurrence Handle10552653

    Article  CAS  PubMed  Google Scholar 

  22. M. Friedman H. S. Jürgens (2000) ArticleTitleEffect of pH on the stability of plant phenolic compounds J. Agric. Food Chem. 48 2101–2110 Occurrence Handle1:CAS:528:DC%2BD3cXjtlGrtbc%3D Occurrence Handle10888506

    CAS  PubMed  Google Scholar 

  23. W. T. Reichle (1986) ArticleTitleSynthesis of anionic clay minerals (mixed metalhydroxides, hydrotalcite) Solid State Ionics 22 135–141 Occurrence Handle10.1016/0167-2738(86)90067-6 Occurrence Handle1:CAS:528:DyaL2sXmvFGquw%3D%3D

    Article  CAS  Google Scholar 

  24. S. Miyata (1983) ArticleTitleAnion-exchange properties of hydrotalcite-like compounds: characterization and properties of the obtained materials Clay Miner. 31 305–311 Occurrence Handle1:CAS:528:DyaL3sXlsVKkt7o%3D

    CAS  Google Scholar 

  25. N. T. Whilton P. J. Vickers S. Mann (1997) ArticleTitleBioinorganic clays: synthesis and characterization of amino- and polyamino acid intercalated layered double hydroxides J. Mater. Chem. 7 1623–1629 Occurrence Handle10.1039/a701237c Occurrence Handle1:CAS:528:DyaK2sXls1Wgsbc%3D

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry for Education, University and Research (MIUR)—research programs of national interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoubben, A., Blasi, P., Giovagnoli, S. et al. Evaluation and Optimization of the Conditions for an Improved Ferulic Acid Intercalation into a Synthetic Lamellar Anionic Clay. Pharm Res 23, 604–613 (2006). https://doi.org/10.1007/s11095-005-9394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-9394-y

Key Words

Navigation