Skip to main content

Advertisement

Log in

Method Validation and Measurement of Biomarkers in Nonclinical and Clinical Samples in Drug Development: A Conference Report

  • Conference Report
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Biomarkers are increasingly used in drug development to aid scientific and clinical decisions regarding the progress of candidate and marketed therapeutics. Biomarkers can improve the understanding of diseases as well as therapeutic and off-target effects of drugs. Early implementation of biomarker strategies thus promises to reduce costs and time-to-market as drugs proceed through increasingly costly and complex clinical development programs. The 2003 American Association of Pharmaceutical Sciences/Clinical Ligand Assay Society Biomarkers Workshop (Salt Lake City, UT, USA, October 24–25, 2003) addressed key issues in biomarker research, with an emphasis on the validation and implementation of biochemical biomarker assays, covering from preclinical discovery of efficacy and toxicity biomarkers through clinical and postmarketing implementation. This summary report of the workshop focuses on the major issues discussed during presentations and open forums and noted consensus achieved among the participants on topics from nomenclature to best practices. For example, it was agreed that because reliable and accurate data provide the basis for sound decision making, biomarker assays must be validated in a manner that enables the creation of such data. The nature of biomarker measurements often precludes direct application of regulatory guidelines established for clinical diagnostics or drug bioanalysis, and future guidance on biomarker assay validation should therefore be adaptable enough that validation criteria do not stifle creative biomarker solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAPS:

American Association of Pharmaceutical Sciences

BQL:

below quantifiable limit

CDER:

Center for Drug Evaluation and Research

CMS:

Centers for Medicare & Medicaid Services

CLAS:

Clinical Ligand Assay Society

CLIA:

Clinical Lab Improvement Amendments

GLP:

good laboratory practices

LBABFG:

Ligand Binding Assay Bioanalytical Focus Group

LOD:

lower limit of detection

LLOQ:

lower limit of quantification

NCCLS:

National Committee for Clinical Laboratory Standards

PD:

pharmacodynamic

PK:

pharmacokinetic

OIVD:

Office of in Vitro Diagnostics Device Evaluation and Safety

QCs:

quality controls

ULOQ:

upper limit of quantification

References

  1. 1. J. A. DiMasi, R. W. Hansen, and H. G. Grabowski. The price of innovation: new estimates of drug development costs. J. Health Econ. 22:151–185 (2003).

    Article  PubMed  Google Scholar 

  2. 2. G. Levy. Mechanism-based pharmacodynamics modeling. Clin. Pharmacol. Ther. 56:356–358 (1994).

    CAS  PubMed  Google Scholar 

  3. 3. C. C. Peck, W. H. Barr, L. Z. Benet, J. Collino, R. E. Desjardins, D. E. Furst, J. G. Harter, G. Levy, T. Ludden, and J. H. Rodman. Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Pharm. Sci. 81:600–610 (1992).

    Google Scholar 

  4. 4. W. A. Colburn. Selecting and validating biologic markers for drug development. J. Clin. Pharmacol. 37:355–362 (1997).

    CAS  PubMed  Google Scholar 

  5. 5. P. R. Jadhav, M. U. Mehta, and J. V. S. Gobburu. How biomarkers can improve clinical drug development. Am. Pharm. Rev. 7:62–64 (2004).

    Google Scholar 

  6. 6. E. Zerhouni. Medicine. The NIH Roadmap. Science 302:63–72 (2003). Available at http://nihroadmap.nih.gov.

    Article  CAS  PubMed  Google Scholar 

  7. 7. F. D. A. March 2004 report. Innovation or stagnation: challenge and opportunity on the critical path. Available at http://www.fda.gov/oc/initiatives/criticalpath/.

  8. 8. G. J. Downing. Biomarkers and Surrogate Endpoints: Clinical Research and Applications. Proceedings of the NIH-FDA Conference held on 15–16 April 1999. Elsevier, New York, 2000.

    Google Scholar 

  9. 9. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69:89–95 (2001).

    Google Scholar 

  10. 10. R. R. Bowsher. Analytical validation of assays for novel biomarkers. Presentation at AAPS Workshop, Method Validation and Measurement of Biomarkers in Nonclinical and Clinical Samples in Drug Development, Salt Lake City, Utah, 2003.

  11. 11. J. A. Wagner. Early clinical development of pharmaceuticals for type 2 diabetes mellitus: from pre-clinical models to human investigation. J. Clin. Endocrinol. Metab. 87:5362–5366 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. 12. J. A. Wagner. Overview of biomarkers and surrogate endpoints in drug development. Dis. Markers 18:41–46 (2002).

    CAS  PubMed  Google Scholar 

  13. 13. J. Berger and J. A. Wagner. Physiological and therapeutic roles of peroxisome proliferator-activated receptors. Diabetes Technol. Ther. 4:163–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. 14. U. Krishnamurti and M. W. Steffes. Glycohemoglobin: a primary predictor of the development or reversal of complications of diabetes mellitus. Clin. Chem. 47:1157–1165 (2001).

    CAS  PubMed  Google Scholar 

  15. 15. D. A. Dillon. Molecular markers in the diagnosis and staging of breast cancer. Semin. Radiat. Oncol. 12:305–318 (2002).

    Article  PubMed  Google Scholar 

  16. 16. R. Dates, M. Schmitt, and N. Harbeck. Advanced statistical methods for the definition of new staging models. Recent Results Cancer Res. 162:101–113 (2003).

    PubMed  Google Scholar 

  17. 17. B. N. Swanson. Delivery of high-quality biomarker assays. Dis. Markers 18:47–56 (2002).

    CAS  PubMed  Google Scholar 

  18. 18. I. C. H. Guidelines. Text on validation of analytical procedures, Q2A. International Conference on Harmonization, Geneva, Switzerland, 1994.

    Google Scholar 

  19. 19. V. P. Shah, K. K. Midha, S. Dighe, I. J. McGilveray, J. P. Skelly, A. Yacobi, T. Layloff, C. T. Viswanathan, C. E. Cook, R. D. McDowall, K. A. Pittman, and S. Spector. Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. Pharm. Res. 9:588–592 (1992).

    Google Scholar 

  20. 20. V. P. Shah, K. K. Midha, J. W. A. Findlay, H. M. Hill, J. D. Hulse, I. J. McGilvary, G. McKay, K. J. Miller, R. N. Patnaik, M. L. Powell, A. Tonnelli, C. T. Viswanathan, and A. Yacobi. Bioanalytical method validation. A revisit with a decade of progress. Pharm. Res. 17:1551–1557 (2000).

    CAS  PubMed  Google Scholar 

  21. 21. Guidance for industry on bioanalytical method validation: availability. Federal Register 66:28526–28527 (2001).

  22. 22. FDA government document. Code of Federal Regulations. Title 21, Vol. 1. Good Laboratory Practice for Nonclinical Laboratory Studies. Revised April 1, 2001.

  23. 23. J. W. A. Findlay, W. C. Smith, J. W. Lee, G. D. Nordblom, I. Das, B. S. DeSilva, M. N. Khan, and R. R. Bowsher. Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J. Pharm. Biomed. Anal. 21:1249–1273 (2000).

    CAS  PubMed  Google Scholar 

  24. 24. K. J. Miller, R. R. Bowsher, A. Celniker, J. Gibbons, S. Gupta, J. W. Lee, S. J. Swanson, W. C. Smith, and R. S. Weiner. Workshop on Bioanalytical Methods Validation for Macromolecules: summary report. Pharm. Res. 18:1373–1383 (2001).

    CAS  PubMed  Google Scholar 

  25. 25. B. DeSilva, W. Smith, R. Weiner, M. Kelley, J. Smolec, B. Lee, M. Khan, D. Tracey, H. Hill, and A. Celniker. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm. Res. 20:1885–1900 (2003).

    CAS  PubMed  Google Scholar 

  26. 26. W. C. Smith and G. S. Sittampalam. Conceptual and statistical issues in the validation of analytic dilution assays for pharmaceutical applications. J. Biopharm. Stat. 8:509–532 (1998).

    CAS  PubMed  Google Scholar 

  27. 27. J. W. Lee, W. C. Smith, G. D. Nordblom, and R. R. Bowsher. Validation of Assays for the Bioanalysis of Novel Biomarkers. In J. C. Bloom and R.A. Dean (eds.), Biomarkers in Clinical Drug Development. Marcel Dekker, New York, 2003, pp. 119–149.

    Google Scholar 

  28. 28. A. R. Mire-Sluis, Y. C. Barrett, V. Devanarayan, E. Koren, H. Liu, M. Maia, T. Parish, G. Scott, G. Shankar, E. Shores, S. J. Swanson, G. Taniguchi, D. Wierda, and L. A. Zuckerman. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J. Immunol. Methods 289:1–16 (2004).

    CAS  PubMed  Google Scholar 

  29. 29. National Committee for Clinical Laboratory Standards (NCCLS). Document EP5-A: Evaluation of Precision Performance of Clinical Chemistry Devices: Approved Guideline (1999); Document EP6-P: Evaluation of the Linearity of Quantitative Analytical Method: Proposed Guideline (1986); Document EP7-P: Interference Testing in Clinical Chemistry: Proposed Guideline (1986); Document EP9-A: Method Comparison and Bias Estimation Using Patient Samples: Approved Guideline (1995).

  30. 30. FDA government document. Code of Federal Regulations. Title 42, Vol. 3. Clinical Laboratory Improvement Amendment. Revised October 1, 2001.

  31. 31. J. O. Westgard, P. L. Barry, M. R. Hunt, and T. Grove. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin. Chem. 27:493–501 (1981).

    CAS  PubMed  Google Scholar 

  32. 32. J. O. Westgard and G. G. Klee. Quality management. In C. Burtis (ed.), Fundamentals of Clinical Chemistry, 4th ed. WB Saunders, Philadelphia, 1996, pp. 211–223.

    Google Scholar 

  33. 33. P. M. Bossuyt, J. B. Reitsma, D. E. Burns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, and J. G. Lijmer. Standards for Reporting of Diagnostic Accuracy. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin. Chem. 49:7–18 (2003).

    CAS  PubMed  Google Scholar 

  34. 34. DAKO HercepTest™ Facts, DAKO, Fort Collins, CO, USA, 2000.

  35. 35. B. Schweitzer, S. Roberts, B. Grimwade, W. Shao, M. Wang, Q. Fu, Q. Shu, I. Laroche, Z. Zhou, V. T. Tchernev, J. Christiansen, M. Velleca, and S. F. Kingsmore. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol. 20:359–365 (2002).

    CAS  PubMed  Google Scholar 

  36. 36. W. Shao, Z. Zhou, I. Laroche, H. Lu, Q. Zong, D. D. Patel, S. Kingsmor, and S. P. Piccoli. Optimization of rolling-circle amplified protein microarrays for multiplexed protein profiling. J. Biomed. Biotechnol. 5:299–307 (2003).

    Google Scholar 

  37. 37. S. F. Kingsmore and D. D. Patel. Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification. Curr. Opin. Biotechnol. 14:74–81 (2003).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean W. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Weiner, R., Sailstad, J. et al. Method Validation and Measurement of Biomarkers in Nonclinical and Clinical Samples in Drug Development: A Conference Report. Pharm Res 22, 499–511 (2005). https://doi.org/10.1007/s11095-005-2495-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2495-9

Key Words:

Navigation