Skip to main content
Log in

Lamiaceae Family Plants: One of the Potentially Richest Sources of Antimicrobials

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Microbial resistance to antibiotics is a serious challenge for both medicine and veterinary. Several mechanisms of antibiotic resistance development are known. Although, there are some approaches to overcome this threat, no final solution has been found yet. In this context, herbal preparations are of great interest due to their high therapeutic value, synergistic abilities with known antibiotics, and few side effects. Literature data suggest a number of plant species with antimicrobial properties against pathogenic, non-pathogenic, antibiotic-susceptible and resistant microbial strains. The present review considers literature data published within the last ten years concerning the most studied plant species of Lamiaceae family, possessing remarkable antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. S. C. Lourenço, M. Moldão-Martins, and V. D. Alves, Molecules, 24(22), 4132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. M. Laxa, M. Liebthal, W. Telman, et al., Antioxidants, 8(4), 94 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Wang, S. Alseekh, A. R. Fernie, and J. Luo, Mol. Plant., 12, 899 – 919 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. P. D. Gupta and T. J. Birdi, J. Ayurveda Integr. Med., 8(4), 266 – 275 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. G. Nieto, Plants (Basel), 30 9(8):961 (2020).

  6. N. Sahakyan, A. Bartoszek, C. Jacob, et al., Curr. Pharmacol. Rep., 6, 131 – 136 (2020).

    Article  CAS  Google Scholar 

  7. I. L. Elisha, F. S. Botha, L. J. McGaw, and J. N. Eloff, BMC Complem. Altern.. Med., 17(1), 133 (2017).

    Google Scholar 

  8. C. L. Gorlenko, H. Y. Kiselev, E. V. Budanova, et al., Antibiotics, 9(4), 170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N. Sahakyan, M. Petrosyan, and A. Trchounian, Curr. Pharm. Des., 25(16), 1861 – 1865 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. G. Yuan, Y. Guan, H. Yi, et al., Sci.Rep. 11, 10471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. F. Chassagne, T. Samarakoon, G. Porras, et al., Front. Pharmacol., 11, 586548 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. N. Jubair, M. Rajagopal, S. Chinnappan, et al., Evid. Based Complem. Altern. Med., 2021, Article ID 3663315 (2021).

  13. S. E. Boyd, D. M. Livermore, D. C. Hooper, and W. W. Hope, Antimicrob. Agents Chemother., 64, e00397-20 https: // doi.org / 10.1128 / AAC.00397-20 (2020).

  14. M. J. Cheesman, A. Ilanko, B. Blonk, and I. E. Cock, Pharmacogn. Rev., 11(22), 57 – 72 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Ginovyan and A. Trchounian, Proc. Yerevan State Univ. Chem. Biol., 51(1), 44 – 53 (2017).

    Google Scholar 

  16. N. Sahakyan, M. Petrosyan, and A. Trchounian, Int. J. Biol. Biomol. Agric. Food. Biotechnol., Eng. 10, 322 – 326 (2016).

  17. A. Avetisyan, A. Markosian, M. Petrosyan, et al., BMC Complem. Altern. Med., 17, 60 (2017).

    Article  Google Scholar 

  18. A. Moghrovyan, N. Sahakyan, A. Babayan, et al., Curr. Pharm. Des., 25: 1809. 2019ID 3663315 (2021).

  19. N. Zh. Sahakyan, M. T. Petrosyan and A. H. Trchounian, Proc. Yerevan State Univ. Chem. Biol., 53(1), 23 – 28 (2019).

    Google Scholar 

  20. B. Khameneh, M. Iranshahy, V. Soheili, and B. S. Fazly Bazzaz, Antimicrob. Resist. Infect. Control., 16(8), 118 (2019).

  21. Y. Su, D. Wu, H. Xia, et al., Environ. Int., 128, 407 – 416 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. S. Hambardzumyan, N. Sahakyan, M. Petrosyanet, et al., AMB Expr., 10, 162 (2020).

    Article  CAS  Google Scholar 

  23. S. Gevorgyan, R. Schubert, M. Yeranosyan, et al., AMB Expr., 11, 51 (2021).

    Article  CAS  Google Scholar 

  24. Z. Ferdous and A.Nemmar, Int. J. Mol. Sci., 21(7), 2375. (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. A. Hussein and A. A. El-Anssary, Plant Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants, in: Herbal Medicine, Philip F. Builders, Intech Open, DOI: 10.5772 / intechopen.76139 (2018).

  26. J. Kurek (November 13th 2019). Introductory Chapter: Alkaloids – Their Importance in Nature and for Human Life, Alkaloids – Their Importance in Nature and Human Life, Joanna Kurek, IntechOpen, DOI: 10.5772 / intechopen.85400. Available from: www.intechopen.com/chapters/66742

  27. M. Nakayasu, S. Yamazaki, Y. Aoki, et al., Plants, 10, 2189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H. Cory, S. Passarelli, J. Szeto, et al., Front. Nutr., 21, 5:87 (2018).

  29. K. V. Bezmaternykh, T. I. Shirshova, I. V. Beshley, et al., Pharm. Chem. J., 48(2), 116 – 120 (2014).

    Article  CAS  Google Scholar 

  30. S.-Y. Teow, K. Liew, S. A. Ali, et al., J. Trop. Med., 2016, Article ID 2853045 (2016).

  31. I. Camele, H. S. Elshafie, L. Caputo and V. De Feo, Front. Microbiol., 10: 2619 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. M. Ginovyan, N. Sahakyan, M. Petrosyan and A. Trchounian, Proc. of the Yerevan State Univ. Chemistry and Biology, 55 (1-254), 25 – 38 (2021).

  33. J. A. Imlay, Environ. Microbiol. 21(2), 521 – 530 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. A. J. Seukep, V. Kuete, L. Nahar, et al., J. Pharm. Anal., 10(4), 277 – 290 (2020).

    Article  PubMed  Google Scholar 

  35. A. Domenech, A. R. Brochado, V. Senderet al., Cell Host Microbe, 27(4), 544 – 555 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. R. Subramani, M. Narayanasamy and K. D. Feussner, 3Biotech. 7(3), 172 (2017).

  37. C. M. Uritu, C. T. Mihai, G. D. Stanciu, et al., Pain Res. Manag., 2018, 7801543 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. I. Cocan, E. Alexa, C. Danciu,, et al., Exp. Ther. Med., 15(2), 1863 – 1870 (2018).

    CAS  PubMed  Google Scholar 

  39. A. Escobar, M. Pérez, G. Romanelli, et al., Arabian J. Chem., 13(12), 9243 – 9269 (2020).

    Article  CAS  Google Scholar 

  40. N. Sahakyan, M. Petrosyan, I. Koss-Miko3ajczyk, et al., Free Rad. Res., 53(sup1), 1153 – 1162 (2019).

  41. C. Uritu, C. T. Mihai, G. D. Stanciu, et al., Pain Res. Manag., 2018, Article ID 7801543, 44 pages, (2018).

  42. R. M. Harley, S. Atkins, A. L. Budantsev,, et al., 2004. “Labiatae” pages 167 – 275. In: Klaus Kubitzki (Editor) and Joachim W. Kadereit (Volume Editor). The Families and Genera of Vascular Plants, volume VII. Springer-Verlag, Berlin – Heidelberg, Germany. ISBN 978-3-540-40593-1

  43. M. H. Shahrajabian, W. Sun, Q. Cheng, Int. J. Food Prop., 23(1) 1961 – 1970, (2020).

    Article  CAS  Google Scholar 

  44. V. Kumar, T. Markoviæ, M. Emerald, et al., Encyclopedia of Food and Health, (2016), pp. 332 – 337.

  45. T. Tangpao, H-H. Chung, S. R. Sommano Aromatic Profiles of Essential Oils from Five Commonly Used Thai Basils. Foods, 2018; 7(11):175 (2018).

  46. C. Majdi, C. Pereira, M. I. Dias, et al., Antioxidants (Basel), 29, 9(5):369 (2020)

  47. A. Wesolowska and D. Jadczak, Not Bot Horti Agrobot Cluj Napoca, 47(3), 829 – 835 (2019).

    CAS  Google Scholar 

  48. M. K. Swamy, M. S. Akhtar and U. R. Sinniah, Evid.-Based Complem. Altern. Med., 2016, Article ID 3012462, 21 pages (2016).

  49. A. Puškárová, M. Buèková, L. Kraková, et al., Sci. Rep., 7, 8211 (2017).

  50. Q. Benameur, T. Gervasi, V. Pellizzeri, et al., Nat. Prod. Res., 33(18), 2647 – 2654 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. L. Galovièová, P. Borotová, V. Valková, et al. Plants, 10(7), 1416. (2021).

  52. D. Salaria, R. Rolta, C. N. Patel, J. Biomol. Struct. Dyn., 8, 1 – 20 (2021).

    Google Scholar 

  53. S. Ivasenko, P. Orazbayeva, K. Skalicka–Wozniak, et al., Maced J. Med. Sci., 9(A), 61 – 67 (2021).

  54. W. Ouedrhiri, B. Mounyr, E. H. Harki, et al., Int. J. Food Prop., 20(12), 3149 – 3158 (2017).

    Article  CAS  Google Scholar 

  55. T. Yin, L. Cai, Zh. RSC Advances, 10, 35072 – 35089 (2020).

    Article  CAS  Google Scholar 

  56. V. Rodrigues, C. Cabral, L. Évora, et al., Arab. J. Chem., 12, 3236 – 3243 (2019).

    Article  CAS  Google Scholar 

  57. F. Ben Abdallah, R. Lagha and A. Gaber, Pharmaceuticals, 13(11), 369 (2020).

  58. C. Ballester-Costa, E. Sendra, J. Fernández-López, et al., Foods, 28, 6(8):59 (2017).

  59. F. Z. Sadiki, M. El Idrissi and M. Sbiti, Spec. J. Med. Res. Health Sci., 4(3), 59 – 64 (2019).

    Google Scholar 

  60. I. Oniga, C. Puscas, R. Silaghi-Dumitrescu, et al., Molecules, 23(8), 2077 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. M. Lu, T. Dai, C. K. Murray, et al., Front. Microbiol., 9, 2329 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. I. El-Alam, R. Zgheib, M. Iriti, et al., Foods, 8(3), 90 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. R. A. Alwafa, S. Mudalal, and G. Mauriello, Plants, 10, 1001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. T. Esposito, F. Sansone, G. Auriemma, Pharmaceutics, 12(7), 671 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. X. Qing, H.-M. Yan, Z.-Y. Ni, et al., Heterocycl. Commun., 23(4), 245 – 268 (2017).

    Article  CAS  Google Scholar 

  66. M. Alreshidi, E. Noumi, L. Bouslama, et al., Plants, 9(11), 1418(2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Y. El Atki, I. Aouam, F. Kamari, et al., Arab. J. Chem., 13(2), 3866 – 3874 (2020).

    Article  Google Scholar 

  68. M. Safavi, R. Sabourian and A. Foroumadi, World J. Clin. Cases, 16, 4(1)5– 19 (2016).

  69. B. S. Thawkar, A. G. Jawarkar, P. V. Kamalkar, Int. J. Green Pharm., 10, 71 – 76 (2016).

    CAS  Google Scholar 

  70. M. J. Nirmala, L. Durai, G. S. Anusha, et al., BioNanoSci, 11, 1017 – 1029 (2021).

    Article  Google Scholar 

  71. F. Brahmi, M. Khodir, C. Mohamed, et al., 2017 Chemical Composition and Biological Activities of Mentha Species, Aromatic and Medicinal Plants – Back to Nature, Hany A. El-Shemy, IntecOpen, doi: https://doi.org/10.5772/67291

  72. A. A. Taherpour, S. Khaef, A. Yari, et al., J. Anal. Sci. Technol., 8, 11 (2017).

    Article  Google Scholar 

  73. M. H. F. Shalayel, A. M. Asaad, M. A. Qureshi, et al., J. Herb. Med., 7(2017), 27 – 30 (2017).

    Article  Google Scholar 

  74. S. Angeloni, E. Spinozzi, F. Maggi, et al., Plants, 10, 195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O. Koshovyi, A. Raal, I. Kireyev, et al., Plants, 10, 230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Y. Romanenko, O. Koshovyi, T. Ilyina, et al., ScienceRise. Pharm. Sci., 1(17), 17 – 23 (2019).

    Google Scholar 

  77. J. R. de Oliveira, S. E. A. Camargo, and L. D. de Oliveira, J. Biomed. Sci., 26, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. S. Habtemariam, Evid. Based Complem. Altern. Med., 2016, 2680409. (2016).

  79. G. Nieto, G. Ros and J. Castillo, Medicines (Basel), 4(3), 98 (2018).

    Article  Google Scholar 

  80. J. Stojiljkovic, M. Trajchev, D. Nakov, et al., Adv. Cytol. Pathol., 3(4), 93 – 96 (2018).

    Google Scholar 

  81. R. Sabbobeh, H. Hejaz, A. Jahajha, et al., J. Appl. Pharm. Sci., 6(01), 076 – 082 (2016).

    Article  CAS  Google Scholar 

  82. Y. Ezzoubi, D. Bousta and A. A. Farah, Clin. Phytosci., 6, 9 (2020).

    Article  Google Scholar 

  83. F. Baali, S. Boumerfeg, E. Napoli, et al., J. Essent. Oil-Bear. Plants, 22(3), 821 – 837 (2019).

    Article  CAS  Google Scholar 

  84. S. de Rapper, A. Viljoen and S. van Vuuren, Evid.-Based Complem. Altern. Med., Article ID 2752739 (2016).

  85. D. Predoi, S. L. Iconaru, N. Buton, et al., Nanomaterials (Basel), 8(5):291 (2018).

    Article  PubMed  Google Scholar 

  86. W. H. Leong, K. S. Lai, and S. H. E. Lim, Processes, 9(4), 609 (2021).

    Article  CAS  Google Scholar 

  87. D. J. Newman, J. Med. Chem., 51, 2589 – 2599 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. S. Andrei, G. Droc, G. Stefan, FDA approved antibacterial drugs: 2018 – 2019 Discoveries (Craiova), Dec 31, 7(4), e102 (2019).

  89. 2020 Antibacterial agents in clinical and preclinical development: an overview and analysis. Geneva: World Health Organization (2021).

    Google Scholar 

  90. B. M. Lawrence, A further examination of the variation of Ocimum basilicum, in: B. M. Lawrence, B. D. Mookerjee, and B. J. Willis (Eds.), Flavors and Fragrances: A World Perspective, Amsterdam: Elsevier Sci. Publ. B. V (1988), pp. 161 – 170.

    Google Scholar 

  91. G. Tsasi, T. Mailis, A. Daskalaki, et al., Plants, 6(3), 41 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. B. Salehi, M. Abu-Darwish, A. H. Tarawneh, et al., Trends Food Sci. Technol., 85, 287 – 306 (2019).

    Article  CAS  Google Scholar 

  93. Z. Akan, M. Dikilidal, H. Ozdemir, et al., Med. Sci. Discov., 1(2), 51 – 60 (2019).

    Article  Google Scholar 

  94. A. S. P. Pereira, A. J. Banegas-Luna, J. Peña-García, et al., Molecules, 24(22), 4030 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. J. Rahmawati, D. Muhammad, A. S. Wahyuni, et al., EurAsian J. BioSci., 14, 5341 – 5346 (2020).

    CAS  Google Scholar 

  96. T. Haile, S. M. Cardoso, C. de Oliveira Raphaelli, et al., Front. Pharmacol., 12, 621536 (2021).

  97. M. A. Picos-Salas, J. B. Heredia, N. Leyva-López, et al., Processes, 9(9),1675 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zh. Sahakyan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahakyan, N.Z. Lamiaceae Family Plants: One of the Potentially Richest Sources of Antimicrobials. Pharm Chem J 57, 565–572 (2023). https://doi.org/10.1007/s11094-023-02921-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02921-1

Keywords

Navigation