Skip to main content
Log in

Synthesis of Chalcone Derivative from Clove Leaf Waste as a Natural Antioxidant

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The synthesis of chalcone derivatives from clove leaf waste and their potential application as natural antioxidants have been studied. Synthesis of chalcone derivatives takes six steps: (1) distillation of clove leaf oil waste, (2) isolation of eugenol from clove leaf oil, (3) isomerization reaction of eugenol to produce isoeugenol, (4) oxidation reaction of isoeugenol to produce vanillin, (5) O-allylation reaction of vanillin to produce 4-allyloxy-3-methoxy benzaldehyde, and (6) Claisen-Schmidt condensation reaction of compound 5 with acetophenone to yield 3-(4-allyloxy-3-methoxyphenyl)-1-phenyl prop-2-en-1-one as chalcone derivative of target molecule in 97.28% yield. The antioxidant activity was evaluated in oleic acid oxidation reaction in comparison to butylated hydroxytoluene (BHT) as a standard by using ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods. The test showed that the order of antioxidant activity was as follows : BHT > 3-(4-allyloxy-3-methoxyphenyl)-1-phenyl prop-2-en-1-one > vanillin > 4-allyloxy-3-methoxy benzaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. J. Liu, et al., Carbohydr. Polym, 78(3), 439 – 443 (2009).

    Article  CAS  Google Scholar 

  2. H. Jabeen, S. Saleemi, H. Razzaq, et al., J. Photochem. Photobiol. B: Biol., 180, 268 – 275 (2018).

    Article  CAS  Google Scholar 

  3. M. Valko, D. Leibfritz, J. Moncol, et al., Int. J. Biochem. Cell Biol., 39(1), 44 – 84 (2007).

    Article  CAS  Google Scholar 

  4. K. Sugamura and J. F. Keaney, Free Radic. Biol. Med., 51(5), 978 – 992 (2011).

    Article  CAS  Google Scholar 

  5. B. Zeng, M. Su, Q. Chen, et al., Carbohydr. Polym., 153, 391 – 398 (2016).

    Article  CAS  Google Scholar 

  6. J. F. Varghese, R. Patel, and U. C. S. Yadav, Curr. Cardiol. Rev., 14(1) 4 – 14 (2017).

    Article  Google Scholar 

  7. M. Q. Hassan, M. S. Akhtar, M. Akhtar, et al., Redox Rep., 20(6), 275 – 281 (2015).

    Article  CAS  Google Scholar 

  8. J. Arauz, E. Ramos-Tovar, and P. Muriel, Ann. Hepatol., 15(2), 160 – 173 (2016).

    CAS  PubMed  Google Scholar 

  9. F. S. Aldawsari, et al., Bioorg. Med. Chem. Lett., 26(5), 1411 – 1415 (2016).

    Article  CAS  Google Scholar 

  10. A. N. C. Simäo, et al., Metab. Brain Dis., 30(6), 1409 – 1416 (2015).

    Article  Google Scholar 

  11. N. Chattopadhyay, T. Ghosh, S. Sinha, et al., Food Chem., 118(3), 823 – 829 (2010).

    Article  CAS  Google Scholar 

  12. R. L. Prior, X. Wu, and K. Schaich, J. Agric. Food Chem., 53(10), 4290 – 4302 (2005).

    Article  CAS  Google Scholar 

  13. B. P. Bandgar, et al., Bioorg. Med. Chem. Lett., 23(3), 912 – 916 (2013).

    Article  CAS  Google Scholar 

  14. J. S. Wright, E. R. Johnson, and G. A. DiLabio, J. Am. Chem. Soc., 123(6), 1173 – 1183 (2001).

    Article  CAS  Google Scholar 

  15. T. Jähnert, M. D. Hager, and U. S. Schubert, J. Mater. Chem. A, 2(37), 15234 – 15251 (2014).

    Google Scholar 

  16. V. P. Osipova, N. T. Berberova, R. A. Gazzaeva, and K. V. Kudryavtsev, Cryobiology, 72(2), 112 – 118 (2016).

    Article  CAS  Google Scholar 

  17. T. Narsinghani, M. C. Sharma, and S. Bhargav, Med. Chem. Res., 22(9), 4059 – 4068 (2013).

    Article  CAS  Google Scholar 

  18. M. Rahman, Chem. Sci. J., 2(3), 1 – 16 (2011).

    Google Scholar 

  19. J. S. Park, et al., Bioorg. Med. Chem. Lett., 20(3), 1162 – 1164 (2010).

    Article  CAS  Google Scholar 

  20. J. Cianci, et al., Bioorg. Med. Chem. Lett., 18(6), 2055 – 2061 (2008).

    Article  CAS  Google Scholar 

  21. N. K. Sahu, S. S. Balbhadra, J. Choudhary, and D. V. Kohli, Curr. Med. Chem., 19(2), 209 – 225 (2012).

    Article  CAS  Google Scholar 

  22. K. J. Jarag, D. V. Pinjari, A. B. Pandit, and G. S. Shankarling, Ultrason. Sonochem., 18(2), 617 – 623 (2011).

    Article  CAS  Google Scholar 

  23. Z. K. Abbas, S. Saggu, M. I. Sakeran, et al., Saudi J. Biol. Sci., 22(3), 322 – 326 (2014).

    Article  Google Scholar 

  24. S. Padhye, et al., Bioorg. Med. Chem. Lett., 20(19), 5818 – 5821 (2010).

    Article  CAS  Google Scholar 

  25. J. Mojzis, L. Varinska, G. Mojzisova, et al., Pharmacol. Res., 57(4) 259 – 265 (2008).

    Article  CAS  Google Scholar 

  26. M. Abdel-Aziz, S. E. Park, G. E. D. A. A. Abuo-Rahma, et al., Eur. J. Med. Chem., 69, 427 – 438 (2013).

  27. S. Syam, S. I. Abdelwahab, M. A. Al-Mamary, and S. Mohan, Molecules, 17(6), 6179 – 6195 (2012).

    Article  CAS  Google Scholar 

  28. R. A. Gupta and S. G. Kaskhedikar, Med. Chem. Res., 22(8), 3863 – 3880 (2013).

    Article  CAS  Google Scholar 

  29. Y. P. Qian, et al., Food Chem., 126(1), 241 – 248 (2011).

    Article  CAS  Google Scholar 

  30. N. A. Shakil, M. K. Singh, M. Sathiyendiran, et al., Eur. J. Med. Chem., 59, 120 – 131 (2013).

    Article  CAS  Google Scholar 

  31. S. F. Nielsen, S. B. Christensen, G. Cruciani, et al., J. Med. Chem, 4819 – 4832 (1998).

  32. H. O. Saxena, et al., Steroids, 72(13), 892 – 900 (2007).

    Article  CAS  Google Scholar 

  33. Z. Ratkoviæ et al., Bioorg. Chem., 38(1), 26 – 32 (2010).

    Article  Google Scholar 

  34. G. T. Castro, S. E. Blanco, S. L. Arce, and F. H. Ferretti, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 59(12), 2685 – 2696 (2003).

    Article  CAS  Google Scholar 

  35. D. Alighiri,W. T. Eden, E. Cahyono, and K. I. Supardi, J. Phys. Conf. Ser., 983(1), (2018).

  36. W. T. Eden, D. Alighiri, E. Cahyono, et al., IOP Conf. Ser. Mater. Sci. Eng., 349(1), (2018).

  37. A. karagoz, F. T. Artun, G. Ozcan, et al., Biotechnol. Biotechnol. Equip., 29(11), (2015).

  38. D. Alighiri, E. Cahyono,W. Tirza Eden, et al., Orient. J. Chem., 34(6), 2913 – 2926 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was funded by Hibah Professor, DIPA Universitas Negeri Semarang, Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Alighiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eden, W.T., Alighiri, D., Wijayati, N. et al. Synthesis of Chalcone Derivative from Clove Leaf Waste as a Natural Antioxidant. Pharm Chem J 55, 269–274 (2021). https://doi.org/10.1007/s11094-021-02410-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02410-3

Keywords

Navigation