Skip to main content
Log in

Speeding up the Development of 5-[(4-Chlorophenoxy)-Methyl]-1,3,4-Oxadiazole-2-Thiol as Successful Oral Drug Candidate Based on Physicochemical Characteristics

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The present paper describes for the first time the oral-drug-qualifying predictors, anti-acetylcholinesterase activity, and molecular docking of a new compound, 5-[(4-chlorophenoxy)-methyl]-1,3,4-oxadiazole-2-thiol. The oral bioavailability predictors such as lipophilicity (logP), ionization constant (pKa), solubility (logS) and permeability (logD) were predicted using computational tools. Then, a UV spectrophotometric method was developed to verify the predicted properties and determine stability of the proposed compound in the presence of various stressors. The predicted logP and pKa values were very close to the measured values, while, the computed aqueous solubility (6.46 μg/mL) was lower than that found experimentally (65.00 μg/mL). The logS versus pH and logD versus pH plots indicated that the compound migrated to hydrophilic compartment on increasing pH. The compound remained stable under various photolytic and pH stress conditions. However, the compound exhibited degradation under oxidative and thermal stress. The results of the present study indicate that the proposed compound absorbs well from the oral route and remains stable at ambient temperature and physiological pH. The observed remarkable dose-dependent anti-acetylcholinesterase activity indicates that the compound may be a drug candidate for treating neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. C. Gunaratna, Curr. Sep., 19, 87 – 92 (2000).

    Google Scholar 

  2. M. S. Lee and E. K. Kerns, Mass Spectrom. Rev., 18, 187 – 279 (2000).

    Google Scholar 

  3. R. A. Prentis, Y. Lis, and S. R. Walker, Brit. J. Clin. Pharmacol., 25, 387 – 396 (1998).

    Google Scholar 

  4. S. Venkatesh and R. A. Lipper, J. Pharm. Sci., 89, 145 – 154 (2000).

    CAS  PubMed  Google Scholar 

  5. E. H. Kerns, J. Pharm. Sci., 90, 1838 – 1858 (2001).

    CAS  PubMed  Google Scholar 

  6. J. A. DiMasi, R. W. Hansen, H. G. Grabowski, and L. Lasagna, J. Health Econ., 10, 107 – 142 (1991).

    CAS  PubMed  Google Scholar 

  7. J. A. DiMasi, Drug Inform., 29, 375 – 384 (1995).

    Google Scholar 

  8. J. H. Lin and A. Y. Lu, Pharmacol. Rev., 49, 403 – 449 (1997).

    CAS  PubMed  Google Scholar 

  9. J. A. DiMasi, R. W. Hansen, and H. G. Grabowski, J. Health Econ., 22, 151 – 185 (2003).

    PubMed  Google Scholar 

  10. J. Irwin, D. M. Lorber, S. L. McGovern, et al., Comp. Nanosci. Nanotech., 2, 50 – 51 (2002).

    Google Scholar 

  11. S. Kramer, Pharm. Sci. Technol. Today, 2, 373 – 380 (1999).

    CAS  PubMed  Google Scholar 

  12. G. W. Caldwell, Curr. Opin. Drug Disc. Dev., 3, 30 – 41 (2000).

    CAS  Google Scholar 

  13. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison, Pharm. Res., 12, 413 – 420 (1995).

    CAS  PubMed  Google Scholar 

  14. H. Van de Waterbeemd, Eur. J. Pharm. Sci., 7, 1 – 3 (1998).

    PubMed  Google Scholar 

  15. A. Leo, C. Hansch, and D. Elkins, Chem. Rev., 71, 525 – 616 (1971).

    CAS  Google Scholar 

  16. D. W. Reynolds, K. L. Facchine, J. F. Mullaney, et al., Pharm. Technol., 26, 48 – 56 (2002).

    Google Scholar 

  17. S. Z. Siddiqui, M. A. Abbasi, A. Rehman, et al., Indo-Am. J. Pharm. Res., 4, 3603 – 3617 (2014).

    Google Scholar 

  18. N. Shehzadi, K. Hussain, M. Islam, et al., Lat. Am. J. Pharm., 35, 1991 – 1997 (2016).

    CAS  Google Scholar 

  19. International Conference on Harmonization, Validation of Analytical Procedures: Text and Methodology Q2 (R1), in: ICH harmonized tripartite guidelines, International conference on harmonization of technical requirements for registration of pharmaceuticals for human use, IFPMA: Geneva (1994), pp. 1 – 13.

  20. U. S. Food and Drug Administration, Analytical Procedures and Methods Validation for Drugs and Biologics, in: Draft Guidance for Industry, Center for Drug Evaluation and Research, Department of Health and Human Services, U. S. Food and Drug Administration: Rockville, MD (2015), pp. 1 – 13.

  21. U. S. Food and Drug Administration, Guideline for Submitting Documentation for the Stability of Human Drugs and Biologics, in: Guidance for Industry: Good guidance practices, center for drugs and biologics, Department of Health and Human Services, U. S. food and Drug Administration: Rockville, MD (1987).

  22. U. S. Food and Drug Administration, Fed. Reg. (Notices), 63, 31224 – 31225 (1998).

  23. International Conference on Harmonization, Stability Testing: Photostability Testing of New Drug Substances and Products Q1B, in: ICH harmonized tripartite guideline, International conference on harmonization of technical requirements for registration of pharmaceuticals for human use, IFPMA: Geneva (1996), pp. 1 – 8.

  24. S. Singh, and M. Bakshi, Pharm. Technol., 24, 1 – 14 (2000).

    Google Scholar 

  25. M. Bakshi, B. Singh, A. Singh, and S. Singh, J. Pharm. Biomed. Anal., 26, 891 – 897 (2001).

    CAS  Google Scholar 

  26. M. Bakshi and S. Singh, J. Pharm. Biomed. Anal., 28, 1011 – 1040 (2002).

    CAS  Google Scholar 

  27. International Conference on Harmonization, Stability Testing of New Drug substances and Products Q1A (R2), in: ICH harmonized tripartite guideline, International conference on harmonization of technical requirements for registration of pharmaceuticals for human use, IFPMA, Geneva (2003), pp. 1 – 17.

  28. P. Kovaøikova, J. Klimeš, J. Dohnal, and L. Tisovska, J. Pharm. Biomed. Anal., 36, 205 – 209 (2004).

    Google Scholar 

  29. R. Singh and Z. Rehman, J. Pharm. Educ. Res., 3, 54 – 63 (2012).

    CAS  Google Scholar 

  30. K. K. Hotha, S. P. K. Reddy, K. Raju, and L. K. Ravindranath, Int. Res. J. Pharm., 4, 78 – 85 (2013).

    Google Scholar 

  31. M. Blessy, R. D. Patel, P. N. Prajapati, and Y. K. Agrawal, J. Pharm. Anal., 4, 159 – 165 (2014).

    CAS  PubMed  Google Scholar 

  32. A. Avdeef, J. Pharm. Sci., 82, 183 – 190 (1993).

    CAS  PubMed  Google Scholar 

  33. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Adv. Drug Deliv. Rev., 23, 3 – 25 (1997).

    CAS  Google Scholar 

  34. A. Avdeef, High throughput measurements of solubility profiles, in: Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical and Computational Strategies, B. Testa, H. Van de Waterbeemd, G. Folkers, and R. Guy, (Eds.), Verlag Helvetica Chimica Acta: Switzerland (2001), pp. 305 – 326.

    Google Scholar 

  35. M. Taha, N. H. Ismail, S. Imran, et al., Bioorgan. Med. Chem., 23 7394 – 7404 (2015).

    CAS  Google Scholar 

  36. D. Butina, M. D. Segall, and K. Frankcombe, Drug Discov. Today, 7, S83 – 88 (2002).

    CAS  PubMed  Google Scholar 

  37. F. Yamashita and M. Hashida, Drug Metab. Pharmacokinet., 19, 327 – 338 (2004).

    CAS  PubMed  Google Scholar 

  38. P. A. Chan, S. Duraisamy, P. J. Miller, et al., Hum. Mutat., 28, 683 – 693 (2007).

    CAS  PubMed  Google Scholar 

  39. S. Chun and J. C. Fay, Genome Res., 19, 1553 – 1561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. M. C. Hutter, Curr. Med. Chem., 16, 189 – 202 (2009).

    CAS  PubMed  Google Scholar 

  41. S. E. Flanagan, A. M. Patch, and S. Ellard, Genet. Test Mol. Biomarkers, 14, 533 – 537 (2010).

    CAS  PubMed  Google Scholar 

  42. S. Hicks, D. A. Wheeler, S. E. Plon, and M. Kimmel, Hum. Mutat., 32, 661 – 668 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. X. Li, L. Chen, F. Cheng, et al., J. Chem. Inf. Model, 54, 1061 – 1069 (2014).

    CAS  PubMed  Google Scholar 

  44. R. Kumar and S. L. Khokara, Intern. J. Inst. Pharm. Life Sci., 2, 224 – 230 (2005).

    Google Scholar 

  45. J. J. Plgnatello, Environ. Sci. Technol., 26, 944 – 951 (1992).

    Google Scholar 

  46. Z. D. Okram, B. Kanakapura, R. P. Jagannathamurthy, and V. K. Basavaiah, Quím. Nova, 2012, 35 (2012).

    Google Scholar 

  47. C. M. Maciolek, B. Ma, K. Menzel, et al., Drug Metab. Dispos., 39, 763 – 770 (2011).

    CAS  PubMed  Google Scholar 

  48. K. L. Maier, E. Matejkova, H. Hinze, et al., FEBS Lett., 250, 221 – 226 (1989).

    CAS  PubMed  Google Scholar 

  49. K. Gabrovska, I. Marinov, T. Godjevargova, et al., Int. J. Biol. Macromol., 43, 339 – 345 (2008).

    CAS  PubMed  Google Scholar 

  50. P. Costa, S. Goncalves, P. Valentao, et al., Food Chem. Toxicol., 57, 69 – 74 (2013).

    CAS  PubMed  Google Scholar 

  51. N. Shehzadi, K. Hussain, M. T. Khan, et al., Indian J. Pharm. Sci., 80, 1125 – 1135 (2018).

    Google Scholar 

  52. N. Shehzadi, K. Hussain, N. I. Bukhari, et al., Bangl. J. Pharmacol., 13, 149 – 156 (2018).

    Google Scholar 

Download references

Acknowledgments

One of the authors (N. S.) is thankful to authorities of the University of Punjab for providing chemicals/solvents and laboratory facilities.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shehzadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehzadi, N., Hussain, K., Bukhari, N.I. et al. Speeding up the Development of 5-[(4-Chlorophenoxy)-Methyl]-1,3,4-Oxadiazole-2-Thiol as Successful Oral Drug Candidate Based on Physicochemical Characteristics. Pharm Chem J 53, 931–941 (2020). https://doi.org/10.1007/s11094-020-02101-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02101-5

Keywords

Navigation