Skip to main content
Log in

Antioxidant Activity of Ruthenium(Ii) Complexes Containing Tridentate Triamines and Their Capability to Inhibit Xanthine Oxidase

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Biological activities of organoruthenium complexes [chloro [N,N′-[(2,6-pyridinediyl-κN) diethylidyne] bis-[benzenamine-κN]] [N-[(2-pyridinyl-κN) methylene] benzenesulfonamide-κN] ruthenium(II)] chloride (Cmplx 1), [chloro [2,2′-(2,6-pyridinediyl-κN) bis [1H-benzimidazole-κN3]][N-[(2-pyridinyl-κN) methylene] benzenesulfonamide-κN] ruthenium(II)] chloride (Cmplx 2), and [chloro[2,6-di(1H-pyrazol-3-yl-κN2) pyridine-κN] [N-[(2-pyridinyl-κN) methylene] [benzenesulfonamide-κN] ruthenium(II)] chloride (Cmplx 3) have been studies. The compounds were tested for in vitro biological activity on test models including 2,2-diphenyl-1-picryl-hydrazyl (DPPH) reducing power, superoxide anion radical-scavenging activity, and lipid peroxidation activity by ferric thiocyanate. It is established that Cmplx 2 with benzimidazole ligand displays significant xanthine oxidase inhibitory activity (IC50 = 53.80 ± 2.69 μM), DPPH free radical scavenging activity (79.49 ± 1.59), and superoxide anion radical scavenging activity (75.73 ± 2.85%). The coordination of benzenamine and benzenesulfanoamine ligands reduces lipid peroxidation as observed in the case of Cmplx 1 (87.17 ± 3.88%) and the higher reducing power of Cmplx 1 obtained at all concentrations. It was concluded from the test results that organoruthenium complexes showed much better antioxidant activity than expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. C. Sun, J. Wang, L. Fang, et al., Life Sci., 75, 1063 – 1073 (2004).

    Article  CAS  Google Scholar 

  2. H. Haraguchi, Antioxidative Plant Constituents, in: C. Tingali (Ed.), Bioactive Compounds from Natural Sources, New York: Taylor and Francis (2001), pp. 338 – 377

  3. O. I. Aruoma, J. Am. Oil. Chem. Soc.,73, 1617 – 1625 (1996).

  4. T. Akaike, M. Ando, T. Oda, T et al., J. Clin. Invest.,85, 739 – 745 (1990).

  5. M. L. Ferrandiz and M. J. Alcaraz, Agents Actions, 32, 283 – 288 (1991).

    Article  CAS  Google Scholar 

  6. E. Kokoglu, A. Belce, E. Ozyurt, and Z. Tepeler, Cancer Lett., 50 (1990) 179 – 181.

    Article  CAS  Google Scholar 

  7. J. M. McCord, New Engl. J. Med.,312, 159 – 163 (1985).

    Article  CAS  Google Scholar 

  8. T. Nishino S. Nakanishi, K. Okamoto, et al., Biochem Soc Trans., 25, 783 – 786 (1997).

    Article  CAS  Google Scholar 

  9. H. Tsutomu, Y. Taeko, Y. Rieko, et al., Planta Med., 57, 83 – 84 (1991).

    Article  Google Scholar 

  10. C. G. Hartinger, A. Casini, C. Dyhot, et al., J. Inorg. Biochem., 12, 2136 – 2141 (2008).

    Article  Google Scholar 

  11. E. Alessio, Chem. Rev., 104, 4203 – 4242 (2004).

    Article  CAS  Google Scholar 

  12. F. Wang, J. A. Xu, A. Habtemariam, et al., J. Am. Chem. Soc., 127, 17734 – 17743 (2005).

    Article  CAS  Google Scholar 

  13. D. Griffith, S. Cecco, E. Zagrando, et al., J. Biol. Inorg. Chem., 13, 511 – 520 (2008).

    Article  CAS  Google Scholar 

  14. V. B. Arion, E. Reisner, M. Fremuth, et al., Inorg. Chem., 42, 6024 – 6031 (2003).

    Article  CAS  Google Scholar 

  15. W. Kandioler, C. G. Hartinger, A. A. Nazarov, et al., J. Org. Chem., 694, 922 – 929 (2009).

    Article  Google Scholar 

  16. P. J. Dyson and G. Sava, Dalton Trans., 16, 1929 – 1933 (2006).

    Article  Google Scholar 

  17. C. A. Vock, W. H. Ang, C. Scolaro, et al., J. Med. Chem., 50, 2166 – 2175 (2007).

    Article  CAS  Google Scholar 

  18. A. Dorcier, C. G. Hartinger, R. Scopelliti, et al., J. Inorg Biochem., 102, 1066 – 1076 (2008).

    Article  CAS  Google Scholar 

  19. M. J. Clarke, F. Zhu, and D. R. Frasca, Chem. Rev., 99, 2511 – 2533 (1999).

    Article  CAS  Google Scholar 

  20. I. Bratsos, B. Serli, E. Zagrando, et al,., Inorg. Chem., 46, 975 – 992 (2007).

    Article  CAS  Google Scholar 

  21. T. W. Hambley, Dalton Trans., 43, 4929 – 4937 (2007).

    Article  Google Scholar 

  22. C. S. Allardyce, A. Dorcier, C. Scolaro, and P. J. Dyson, Appl. Organomet. Chem., 19, 1 – 10 (2005).

    Article  CAS  Google Scholar 

  23. C. X. Zhang and S. J. Lippard, Curr. Opin. Chem. Biol., 7, 481 – 489 (2003).

    Article  CAS  Google Scholar 

  24. S. Kapitza, M. Pongratz, M. A. Jakupec, et al., J. Cancer Clin. Oncol., 131, 101 – 120 (2005).

    Article  CAS  Google Scholar 

  25. H. J. Park, K. Lee, S. Park, et al., Bioorg. Med. Chem. Lett., 15, 3307 – 3312 (2005).

    Article  CAS  Google Scholar 

  26. I. Bouabdallah, L. A. M’barek, A. Zyad, et al., Nat. Prod. Res., 20, 1024 – 1030 (2006).

    Article  CAS  Google Scholar 

  27. Y. L. Hong, P. A. Hossler, D. H. Calhoun, and S. R. Meshnic, Antimicrob. Agents Chemother., 39, 1756 – 1763 (1995).

    Article  CAS  Google Scholar 

  28. M. N. L. Nalam, A. Peeters, T. H. M. Jonckers, et al., J. Virol., 81, 9512 – 9518 (2007).

    Article  CAS  Google Scholar 

  29. M. A. Babizhayev, Life Sci., 78, 2343 – 2357 (2006).

    Article  CAS  Google Scholar 

  30. G. Roman, J. G. Riley, J. Z. Vlahakis, et al., Bioorg. Med. Chem., 15, 3225 – 3234 (2007).

    Article  CAS  Google Scholar 

  31. N. B. Patel, S. N. Agravat, and F. M. Shaikh, Med. Chem. Res., 20, 1033 – 1041 (2011).

    Article  CAS  Google Scholar 

  32. N. B. Patel and S. N. Agravat, Chem. Heterocycl. Compds., 45, 1343 – 1353 (2009).

    Article  CAS  Google Scholar 

  33. S. Gulnaz, N. Özdemir, S. Dayan, et al., Organometallics, 30, 4165 – 4173 (2011).

    Article  Google Scholar 

  34. L. Marcocci, L. Packer, M. T. Droy-Lefaix, et al., in: L. Parker (Ed.), Methods in Enzymology, San Diego: Academic Press (1994), pp. 462 – 475.

  35. T. Osawa and M. Namiki, Agric. Biol. Chem., 45, 735 – 740 (1981).

    CAS  Google Scholar 

  36. F. Liu, V. E. C. Ooi, and S. T. Chang, Life Sci., 60, 763 (1997).

    Article  CAS  Google Scholar 

  37. A. Ardestani and R. Yazdanparast, Food Chem., 104, 21 – 29 (2007).

    Article  CAS  Google Scholar 

  38. M. Oyaizu, Jpn. J. Nutr., 103, 413 – 419 (1986).

    Google Scholar 

Download references

Acknowledgements

The authors thank for financial support the Scientific and Technological Research Council of Turkey (TÜBÝTAK; 111T560) and the Scientific Research Project Department of Bingol University (BÜBAP; 2010 – 07)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ýbrahim H. Gecibesler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gecibesler, Ý.H., Dayan, O., Şerbetçi, Z. et al. Antioxidant Activity of Ruthenium(Ii) Complexes Containing Tridentate Triamines and Their Capability to Inhibit Xanthine Oxidase. Pharm Chem J 53, 914–920 (2020). https://doi.org/10.1007/s11094-020-02099-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02099-w

Keywords

Navigation