Skip to main content
Log in

Synthesis and In Vitro Neuroprotective Activity of Analogs with Various Spacer Lengths of a Dimeric Dipeptide Mimetic (GK-2) of Nerve Growth Factor

  • SEARCH FOR NEW DRUGS
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Dimeric dipeptide mimetic GK-2 or hexamethylenediamide bis-(N-monosuccinyl-L-glutamyl-L-lysine), which activated TrkA receptors and exhibited neuroprotective activity in vitro (10–5 – 10–9 M) and in vivo (0.05 – 5 mg/kg i.p.), was designed by us earlier based on the beta-turn of the nerve growth factor (NGF) fourth loop. The effect of dimerizing spacer length on the manifestation of neuroprotective activity was studied by synthesizing GK-2 (11 σ-bonds) analogs tetramethylenediamide bis-(N-monosuccinyl-L-glutamyl-Llysine) (GK-2c); pentamethylenediamide bis-(N-monosuccinyl-L-glutamyl-L-lysine) (GK-2b); and trimethylenediamide bis-(N-monosuccinyl-L-glutamyl-L-lysyl-6-aminohexanoic acid) (GK-2a) containing 9, 10, and 22 σ-bonds, respectively, between the lysine Cα-atoms of the dipeptide fragments. Neuroprotective activity was investigated in vitro using HT-22 mouse hippocampal neuronal cell culture under H2O2-induced oxidative stress and showed that the neuroprotective activity as measured by the minimum effective concentration was 104 times less if the distance between the dipeptide fragments increased from 11 to 22 σ-bonds. The neuroprotective activity decreased insignificantly if this distance was decreased from 11 to 10 σ bonds (GK-2b) and disappeared with 9 σ -bonds (GK-2c). Therefore, the hexamethylene spacer was optimal although the distance between the corresponding amino-acid moieties of natural NGF from an x-ray structure analysis was considerably greater at 33 σ-bonds. This contradiction could have arisen because two ionically bound mimetic molecules interacted with TrkA receptors. Another possible explanation was that TrkA molecules could approach closer in the presence of bis-dipeptide GK-2 than NGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.

Similar content being viewed by others

References

  1. L. Aloe, M. Rocco, B. Balzamino, and A. Micera, Curr. Neuropharmacol., 13(3), 294 – 303 (2015).

    Article  CAS  Google Scholar 

  2. A. M. Colangelo, M. R. Bianco, L. Vitagliano, et al., J. Neurosci., 28(11), 2698 – 2709 (2008).

    Article  CAS  Google Scholar 

  3. S. Maliartchouk, Y. Feng, L. Ivanisevic, et al., Mol. Pharmacol., 57(2), 385 – 391 (2000).

    CAS  PubMed  Google Scholar 

  4. F. M. Longo, Y. Xie, and S. M. Massa, Curr. Med. Chem., 5(1), 29 (2005).

    CAS  Google Scholar 

  5. N. Q. McDonald, R. Lapatto, J. Murray-Rust, et al., Nature, 345, 411 – 414 (1991).

    Article  Google Scholar 

  6. D. R. Kaplan and R. M. Stephens, J. Neurobiol., 25(11), 1404 – 1417 (1994).

    Article  CAS  Google Scholar 

  7. S. B. Seredenin and T. A. Gudasheva, RU Pat. 2,410,392, Jan. 27, 2011; Byull. Izobret., No. 3 (2011).

  8. T. A. Gudasheva, P. Y. Povarnina, T. A. Antipova, et al., J. Biomed. Sci., 22(5), 106 (2015).

    Article  Google Scholar 

  9. K. Obata and K. Noguchi, Life Sci., 74(21), 2643 – 2653 (2004).

    Article  CAS  Google Scholar 

  10. T. A. Antipova, T. A. Gudasheva, and S. B. Seredenin, Byull. Eksp. Biol. Med., 150(11), 537 – 540 (2010).

    Google Scholar 

  11. S. B. Seredenin and T. A. Gudasheva, Zh. Nevrol. Psikhiatr. im. S. S. Korsakova, 6, 63 – 70 (2015).

    Article  Google Scholar 

  12. P. Y. Povarnina, O. N. Vorontsova, T. A. Gudasheva, et al., Acta Nat., 5(3), 84 – 91 (2013).

    Article  Google Scholar 

  13. G. W. Anderson and J. E. Zimmerman, J. Am. Chem. Soc., 86(9), 1839 – 1842 (1964).

    Article  CAS  Google Scholar 

  14. G. R. Jackson, K. Werrbach-Perez, E. L. Ezell, et al., Brain Res., 592(1 – 2), 239 – 248 (1992).

    Article  CAS  Google Scholar 

  15. T. A. Gudasheva, A. V. Tarasyuk, I. O. Logvinov, et al., Bioorg. Khim., 38(3), 280 – 290 (2012).

    CAS  PubMed  Google Scholar 

  16. N. M. Sazonova, A. V. Tarasyuk, D. V. Kurilov, et al., Khim. Farm. Zh., 49(7), 10 – 19 (2015); Pharm. Chem. J., 49(7), 439 – 448 (2015).

  17. K. Riveles, L. Z. Huang, and M. Quik, NeuroToxicology, 29(3), 421 – 427 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was performed in the framework of a State Task (topic No. 0521-2019-0003, Search for pharmacological methods for selective activation of signal transduction pathways of tyrosine kinase neurotrophin receptors as platforms for designing drugs free of the adverse effects of native neurotrophins).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gudasheva.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 53, No. 6, pp. 3 – 10, June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasyuk, A.V., Sazonova, N.M., Kurilov, D.V. et al. Synthesis and In Vitro Neuroprotective Activity of Analogs with Various Spacer Lengths of a Dimeric Dipeptide Mimetic (GK-2) of Nerve Growth Factor. Pharm Chem J 53, 487–494 (2019). https://doi.org/10.1007/s11094-019-02025-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-019-02025-9

Keywords

Navigation