Skip to main content

Advertisement

Log in

Determination of clindamycin in dosage forms and biological samples by adsorption stripping voltammetry with carbon paste electrode

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The electrochemical behavior of antibiotic drugs, clindamycin hydrochloride (I) and its phosphate salt (II), on carbon paste electrode (CPE) is thoroughly investigated. Chemical and electrical parameters affecting the adsorption stripping voltammetry (ASV) measurements are optimized. Two different modes of sweep, viz., differential pulse (DP) and square wave (SW), are compared over a potential range of +400 to +1100 mV in the presence of 0.04 M Britton – Robinson buffer (pH 10) with an accumulation time of 30 s, scan rate of 100 mV/s, and pulse amplitude of 30 mV. The responses are linear over a concentration range of 86 – 430 and 90 – 813 ng/ml for I and 86 – 516 and 172 – 1030 ng/ml for II in the DP and SW sweep modes, respectively. The limits of detection (with correlation coefficients given in brackets) are as follow (ng/ml): 32.60 (0.998) and 90.73 (0.994) for I and 43.51 (0.997) and 83.02 (0.996) for II in the DP and SW sweep modes, respectively. The DP method has been applied successfully to determining the active ingredients in pharmaceutical preparations and in spiked urine with mean percentage recoveries of 99.24 ± 2.14 and 98.66 ± 2.38, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. British Pharmacopoeia (2007), Her Majesty’s Stationary Office, London.

  2. B. J. Magerlein, R. D. Birkenmeyer; F. Kagan, Antimicrobial Agents Chemotherapy, 727 – 730 (1966)

  3. D. J. Platzer, B. A. White, J. Pharm. Biomed. Anal., 41(1), 84 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. S. H. Cho, H. T. Im, W. S. Park, et al., Biomed. Chromatogr., 19(10), 783 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. G. C. Batzias, G. A. Delis; M. Koutsoviti-Papadopoulou, J. Pharm. Biomed. Anal., 35(3), 545 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Z. H. Xia, C. J. Mao, X. F. Han, Z. M. Zhou, Yaowu Fenxi Zazhi, 22(4), 292 (2002), through Analytical abstract, WinSPIRS version 4.01.

    CAS  Google Scholar 

  7. J. C. Yum, B. N. Guo, Y. G. Shi, Sepu 21(1), 94 (2003), through Analyt. abst., WinSPIRS version 4.01.

    Google Scholar 

  8. Z. H. Xia, G. F. Zhang, G. Miao, Yaowu Fenxi Zazhi, 14(6), 33 (1994), through Analytical abstract, WinSPIRS version 4.01

    Google Scholar 

  9. J. C. Wang, H. M. An, Yaowu Fenxi Zazhi, 14(3) 38 (1994), through Analytical abstract, WinSPIRS version 4.01

    Google Scholar 

  10. G. La-Follette, J. Gambertoglio, J. A. White, et al., J. Chromatogr. Biomed. Appl., 75(2 (J. Chromatogr., 431)), 379 (1988).

    Google Scholar 

  11. J. W. Munson, E. J. Kubiak, J. Pharm. Biomed. Anal., 3(6) 523 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. M. A. Targove, N. D. Danielson, 28(10), 505 (1990).

    CAS  Google Scholar 

  13. F. Y. Pan, L. Zhang, J. X. Sun, Zhongguo Yaoke Daxue Xuebao, 33(1), 28(2002), through Analytical abstract, WinSPIRS version 4.01.

    CAS  Google Scholar 

  14. G. N. Rechberger, G. Fauler, W. Windischhofer, Rapid. Commun. Mass. Spectrom, 17(2), 135 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. P. Dehouck; A. van-Schepdael, E. Roets, J. Chromatogr. A., 932(1 – 2), 145 (2001)

    Article  PubMed  CAS  Google Scholar 

  16. X. Zhao, Yaowu Fenxi Zazhi, 11(2), 116 (1991), through Analytical abstract, WinSPIRS version 4.0

    Google Scholar 

  17. C. L. Flurer, K. A. Wolnik, J. Chromatogr. A., 674(1 – 2), 153 (1994)

    Article  PubMed  CAS  Google Scholar 

  18. G. P. V. Mallikarjuna-Rao, P. Aruna-Devi, K. M. M. Krishna-Prasad, C. S. P. Sastry, J. Indian. Chem. Soc., 79(10), 848(2002), through Analytical abstract,WinSPIRS version 4.0.

    Google Scholar 

  19. A. S. Amin, Analusis, 23(8), 415 (1995).

    CAS  Google Scholar 

  20. F. M. Abou-Attia, Egypt. J. Anal. Chem., 3(1), 173 (1994).

    Google Scholar 

  21. X. D. Shao, X. F. Xie, Y. H. Liu, Z. H. Song, J. Pharm. Biomed. Anal., 41(2), 667 (2006)

    Article  PubMed  CAS  Google Scholar 

  22. F. A. El-Yazbi; S. M. Blaih, Analyst, 118(5), 577 (1993).

    Article  CAS  Google Scholar 

  23. P. Norouzi, B. Larijani, M. Ezoddin, M. R. Ganjali, Mater. Sci. and Engin., C 28 (1), 87 (2008).

    Article  Google Scholar 

  24. K. Vytrace, I. Svancara, Egypt. J. Anal. Chem., (3), 78 (1994).

  25. B. Nigovic, B. Simunic, J. Pharm. Biomed. Anal., 32(1), 197 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. W. Yunhua, Y. Shaohua, H. Shengshui, J. Pharm. Biomed. Anal., 41(3), 820 (2006)

    Article  Google Scholar 

  27. E. Laviron, J. Electroanal. Chem., 112, 1 (1980).

    Article  CAS  Google Scholar 

  28. J. C. Miller, J. N. Miller, Statistics for Analytical Chemistry, 3rd Edn, Ellis Horwood, Chichester 53 (1993)

Download references

Acknowledgements

The authors are grateful to Volkswagen Stiftung (Kastanienallee 35, 30519 Hannover, Germany) for financial support in purchasing Metrohm Model 693 VAprocessor and Model 694 VA stand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. I. Habib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habib, I.H.I., Rizk, M.S. & El-Aryan, T.R. Determination of clindamycin in dosage forms and biological samples by adsorption stripping voltammetry with carbon paste electrode. Pharm Chem J 44, 705–710 (2011). https://doi.org/10.1007/s11094-011-0548-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-011-0548-4

Key words

Navigation