Skip to main content
Log in

Quantitative structure-pharmacokinetic/pharmacodynamic relationship for fluoroquinolones

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Abstract

Quantitative structure-pharmacokinetic/pharmacodynamic (PK/PD) relationship (QSPR) techniques and chemometric methods were employed to classify fluoroquinolones with respect to their activity against Streptococcus pneumoniae. Density functional theory (DFT) was used to calculate a set of molecular descriptors (properties) for 13 synthetic fluoroquinolones. The descriptors were further analyzed using chemometric methods including principal component analysis (PCA), hierarchical cluster analysis (HCA), and stepwise discriminant analysis (SDA). The PCA and SDA methods were employed in order to reduce the dimensionality and select a subset of variables that would be more effective for classifying the fluoroquinolones according to their degree of antipneumococcal activity. The methods of PCA, SDA and HCA were quite efficient to classify 13 compounds in two groups (active and inactive), and the net charge on ring B (Q B), molecular volume (VOL), and partition coefficient (log P ) were found to be descriptors important for the classification. These methodologies of PCA, SDA and HCA provide a reliable rule for classifying new fluoroquinolones with respect to antipneumococcal activity. The application of the SPP relationship is of considerable value for clinicians, drug developers, and regulators because PK/PD principles form the basis of modern antimicrobial chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Jacobs, Int. J. Infect Dis., No. 7, 13–20 (2003).

  2. W. A. Craig, Clin. Infect. Dis., 26, 1–12 (1997).

    Google Scholar 

  3. W. A. Craig, Pharmacodynamics of Antimicrobials: General Concepts and Application, in Antimicrobial Pharmacodynamics in Theory and Clinical Practice, C. H. Nightingale, T. Murakawa, P. G. Ambrose (eds.), Marcel Dekker, New York (2002), pp. 1–21.

    Google Scholar 

  4. M. J. Frisch, G. W. Truck, H. B. Schlegel, et al., GAUSSIAN 03 (Revision 03), Gaussian Inc., Pittsburgh PA (2003).

    Google Scholar 

  5. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford-New York (1989).

  6. A. D. Becke, Phys. Rev. A, 38, 3098–3100 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. A. D. J. Becke, Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  8. W. Khon, A. D. Becke, and R. G. J. Parr, J. Phys. Chem., 100, 12974–12980 (1996).

    Article  Google Scholar 

  9. G. G. Zhanel, K. Ennis, L. Vercaigne, et al., Drugs, 62, 13–59 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. G. G. Zhanel, J. A. Karlowsky, L. Palatnick, et al., Antimicrob. Agents Chemother., 43, 2504–2509 (1999).

    PubMed  CAS  Google Scholar 

  11. G. G. Zhanel, Curr. Infect. Dis. Rep., 3, 29–34 (2001).

    Article  PubMed  Google Scholar 

  12. G. G. Zhanel, M. Walters, D. Roberts, et al., J. Antimicrob. Chemother., 47, 435–440 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. G. L. Ridgway, M. D. O'Hare, D. Felmingham, and R. N. Grüneberg, Drugs Exp. Clin. Res., 11, 259–262 (1985).

    PubMed  CAS  Google Scholar 

  14. A. Bauernfeind, J. Antimicrob. Chemother., 40, 639–651 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. D. Felmingham, M. J. Robbins, A. Leakey, et al., In vitro Activity of Moxifloxacin, in Moxifloxacin in Practice, D. Adam, R. Finch R, and P. Hunter (eds.), Maxim Medical, Oxford (1999), Vol. 2, pp. 27–37.

    Google Scholar 

  16. D. B. Hoellman, G. Lin, M. R. Jacobs, and P. C. Appelbaum, J. Antimicrob. Chemother., 43, 45–649 (1999).

    Article  Google Scholar 

  17. M. A. Visalli, M. R. Jacobs, and P. C. Appelbaum, Antimicrob. Agents. Chemother., 41, 2786–2789 (1997).

    PubMed  CAS  Google Scholar 

  18. L. M. Ednie, M. R. Jacobs, and P. C. Appelbaum, Antimicrob. Agents Chemother., 42, 1269–1273 (1997).

    Google Scholar 

  19. T. Nakane, S. Iyobe, K. Sato, and S. Mitsuhashi, Antimicrob. Agents Chemother., 39, 2822–2826 (1995).

    PubMed  CAS  Google Scholar 

  20. M. G. Cormican, and R. N. Jones, Antimicrob. Agents Chemother., 41, 204–211 (1997).

    PubMed  CAS  Google Scholar 

  21. J. M. Woodcock, J. M. Andrews, J. F. Boswell, et al., Antimicrob. Agents Chemother, 41, 101–106 (1997).

    PubMed  CAS  Google Scholar 

  22. J. J. Schentag, K. K. Gilliland, J. A. Paladino, Clin. Infect. Dis., 32(suppl), 39–46 (2001).

    Article  Google Scholar 

  23. E. J. Dolestein and S. M. Garabedian-Ruffalo, Clin. Infect. Dis., 35, 1505–1511 (2002).

    Article  Google Scholar 

  24. http://www.yaoxue.net/bbs/dispbbs.asp?boardid=4&id=196.

  25. H. V. Waterbeemd, N. El Tayar, P.-A. Carrupt, and B. Testa, J. Comput.-Aided Mol. Design., 3, 111–132 (1989).

    Article  Google Scholar 

  26. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, Prentice-Hall, Englewood Cliffs, NJ (1992).

    Google Scholar 

  27. K. V. Mardia, J. T. Kent, and J. M. Bibbly, Multivariate Analysis, Academic Press, New York (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 41, No. 2, pp. 23–28, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XH., Zhu, ZL., Cheng, XL. et al. Quantitative structure-pharmacokinetic/pharmacodynamic relationship for fluoroquinolones. Pharm Chem J 41, 82–87 (2007). https://doi.org/10.1007/s11094-007-0018-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-007-0018-1

Keywords

Navigation