Skip to main content
Log in

Influence of Nitrogen Seeding on the Electron and Ion Behaviors in Helicon Wave Excited Argon Plasma

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effect of nitrogen gas seeding on electron density, electron energy probability functions (EEPFs), ion energy distribution functions (IEDFs) and ion species concentrations downstream of an argon helicon wave plasma (HWP) beam is investigated by Langmuir probe, electrostatic quadrupole plasma analyser and optical emission spectroscopy. Neutral depletion is found at axial location Z = 45 cm downstream of the HWP source, which can suppress the electron loss and cooling at the axis caused by N2 seeding. As the axial location increases to Z = 57.5 cm and then to 70 cm, neutral depletion becomes slight and the addition of N2 can effectively modulate the electron density and EEPFs. IEDFs results indicate a decrease of the average ion energy with an increase of nitrogen admixture, which is consistent with the sheath voltage fall estimated based on the electron temperature and the proportion of each ion species. Moreover, compared with Ar+ ions, the IEDFs of N2+ and N+ ions present a shift towards the higher energy region, due to the radio frequency oscillating sheath effects

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hübner S, Carbone E, Palomares JM, van der Mullen J (2014) Afterglow of argon plasmas with H2, O2, N2, and CO2 admixtures observed by Thomson scattering. Plasma Processes Polym 11:482–488. https://doi.org/10.1002/ppap.201300190

    Article  CAS  Google Scholar 

  2. Barkhordari A, Ganjovi A, Mirzaei I, Falahat A, Rostami Ravari MN (2018) A pulsed plasma jet with the various Ar/N2 mixtures. J Theor Appl Phys 11:301–312. https://doi.org/10.1007/s40094-017-0271-y

    Article  Google Scholar 

  3. Dinescu G, De Graaf A, Aldea E, Van De Sanden MCM (2001) Investigation of processes in low-pressure expanding thermal plasmas used for carbon nitride deposition: I. Ar/N2/C2H2 plasma. Plasma Sour Sci Technol 10(3):513. https://doi.org/10.1088/0963-0252/10/3/316

    Article  CAS  Google Scholar 

  4. Fiebrandt M, Hillebrand B, Spiekermeier S, Bibinov N, Böke M, Awakowicz P (2017) Measurement of Ar resonance and metastable level number densities in argon containing plasmas. J Phys D Appl Phys 50:355202. https://doi.org/10.1088/1361-6463/aa7d67

    Article  CAS  Google Scholar 

  5. Rehman NU, Anjum Z, Masood A, Farooq M, Ahmad I, Zakaullah M (2013) Metrology of non-thermal capacitively coupled N2–Ar mixture plasma. Opt Commun 296:72–78. https://doi.org/10.1016/j.optcom.2013.01.004

    Article  CAS  Google Scholar 

  6. Fouda A, Hazu K, Haemori M, Nakayama T, Tanaka A, Chichibu SF (2011) Transparent semiconducting Nb-doped anatase TiO2 films deposited by helicon-wave-excited-plasma sputtering. J Vac Sci Technol B Nanotechnol Microelectron mater Process Measurement Phenom 29:011017. https://doi.org/10.1116/1.3525918

    Article  CAS  Google Scholar 

  7. Flamm DL, Manos DM (1989) Plasma etching: an introduction. Academic Press

    Google Scholar 

  8. Dwivedi N, Yeo RJ, Satyanarayana N, Kundu S, Tripathy S, Bhatia CS (2015) Understanding the role of nitrogen in plasma-assisted surface modification of magnetic recording media with and without ultrathin carbon overcoats. Sci Rep 5:7772. https://doi.org/10.1038/srep07772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Foster KW, Moy RL, Fincher EF (2008) Advances in plasma skin regeneration. J Cosmet Dermatol 7:169–179. https://doi.org/10.1111/j.1473-2165.2008.00385.x

    Article  PubMed  Google Scholar 

  10. Pu YK, Guo ZG, Yu ZD, Ma J (2005) Tuning effect of inert gas mixing on electron energy distribution function in inductively coupled discharges. Plasma Phys Controll Fus 48:61

    Article  Google Scholar 

  11. Wang Y, Shi J, Li C, Feng C, Ding H (2019) Effect of nitrogen addition on electron density and temperature of cascaded Arc argon discharge plasma diagnosed by laser thomson scattering. Ieee T Plasma Sci 47:1909–1916. https://doi.org/10.1109/tps.2019.2892053

    Article  CAS  Google Scholar 

  12. Foissac C, Krištof J, Annušová A, Veis P, Supiot P (2012) Spectroscopic diagnostics and modelling of a N2–Ar mixture discharge created by an RF helical coupling device: I. Kinetics of N2(B3Πg) and N2(C3Πu) states. Plasma Sour Sci Technol 21:055021. https://doi.org/10.1088/0963-0252/21/5/055021

    Article  CAS  Google Scholar 

  13. Shinohara S (2018) Helicon high-density plasma sources: physics and applications. Adv Phys X 3:1420424. https://doi.org/10.1080/23746149.2017.1420424

    Article  CAS  Google Scholar 

  14. Chang L, Boswell R, Luo G (2022) First helicon plasma physics and applications workshop. Front Phys 9:756. https://doi.org/10.3389/fphy.2021.808971

    Article  Google Scholar 

  15. Zhao G, Wang H, Si X, Ouyang J, Chen Q, Tan C (2017) The discharge characteristics in nitrogen helicon plasma. Phys Plasmas 24:123507. https://doi.org/10.1063/1.5002725

    Article  CAS  Google Scholar 

  16. Yun SM, Kim JH, Chang HY (1997) Frequency dependence of helicon wave plasmas near lower hybrid resonance frequency. J Vac Sci Technol A Vac Surf Films 15:673–677. https://doi.org/10.1116/1.580704

    Article  CAS  Google Scholar 

  17. O Batishchev, JL Cambier (2008) Experimental study of the mini-helicon thruster. MASSACHUSETTS INST OF TECH CAMBRIDGE SPACE PROPULSION LAB. https://apps.dtic.mil/sti/pdfs/ADA502975.pdf

  18. Ji P, Chen J, Huang T, Jin C, Zhuge L, Wu X (2020) Fast preparation of vertical graphene nanosheets by helicon wave plasma chemical vapor deposition and its electrochemical performance. Diamond Relat Mater 108:107958. https://doi.org/10.1016/j.diamond.2020.107958

    Article  CAS  Google Scholar 

  19. Huang T, Ji P, Huang J, Yu B, Wu X (2021) Sputter deposition of WNx thin films by helicon-wave-excited argon plasma with N2 seeding. Surf Coat Technol 410:126941. https://doi.org/10.1016/j.surfcoat.2021.126941

    Article  CAS  Google Scholar 

  20. Chen FF (1996) Physics of helicon discharges. Phys Plasmas 3:1783–1793. https://doi.org/10.1063/1.871697

    Article  CAS  Google Scholar 

  21. Takahashi K, Itoh Y, Fujiwara T (2011) Operation of a permanent-magnets-expanding plasma source connected to a large-volume diffusion chamber. J Phys D Appl Phys 44:015204. https://doi.org/10.1088/0022-3727/44/1/015204

    Article  CAS  Google Scholar 

  22. Chen FF, Sudit ID, Light M (1996) Downstream physics of the helicon discharge. Plasma Sour Sci Technol 5:173. https://doi.org/10.1088/0963-0252/5/2/009

    Article  CAS  Google Scholar 

  23. Zhang T, Cui R, Zhu W, Yuan Q, Ouyang J, Jiang K, Zhang H, Wang C, Chen Q (2021) Influence of neutral depletion on blue core in argon helicon plasma. Phys Plasmas 28:073505. https://doi.org/10.1063/5.0050180

    Article  CAS  Google Scholar 

  24. Kline JL, Balkey MM, Keiter PA, Scime EE, Keesee AM, Sun X, Hardin R, Compton C, Boivin RF, Zintl MW (2003) Ion dynamics in helicon sources. Phys Plasmas 10:2127–2135. https://doi.org/10.1063/1.1563260

    Article  CAS  Google Scholar 

  25. Johnsen R, Chen A, Biondi MA (1980) Three-body association reactions of He+, Ne+, and Ar+ ions in their parent gases from 78 to 300 K. J Chem Phys 73:1717–1720. https://doi.org/10.1063/1.440307

    Article  CAS  Google Scholar 

  26. Avtaeva SV (2019) Species kinetics in Ar-S2 plasma of the pulsed periodic discharge. J Phys Conf Ser 1393:012002. https://doi.org/10.1088/1742-6596/1393/1/012002

    Article  CAS  Google Scholar 

  27. Bogaerts A, Gijbels R (1995) Modeling of metastable argon atoms in a direct-current glow discharge. Phys Rev A 52:3743–3751. https://doi.org/10.1103/physreva.52.3743

    Article  CAS  PubMed  Google Scholar 

  28. Eichwald O, Yousfi M, Hennad A, Benabdessadok MD (1997) Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases. J Appl Phys 82:4781–4794. https://doi.org/10.1063/1.366336

    Article  CAS  Google Scholar 

  29. Smith D, Adams NG (1981) Charge-transfer reactionAr++N2⇄N2++ Ar at thermal energies. Phys Rev A 23:2327–2330. https://doi.org/10.1103/PhysRevA.23.2327

    Article  CAS  Google Scholar 

  30. Anicich VG (1993) Evaluated bimolecular ion-molecule gas-phase kinetics of positive-ions for use in modeling planetary-atmospheres, cometary comae, and interstellar clouds. J Phys Chem Ref Data 22:1469–1569. https://doi.org/10.1063/1.555940

    Article  CAS  Google Scholar 

  31. Dahiya RP, Degraaf MJ, Severens RJ, Swelsen H, Vandesanden MCM, Schram DC (1994) Dissociative recombination in cascaded Arc generated Ar-N2 and N2 expanding plasma. Phys Plasmas 1:2086–2095. https://doi.org/10.1063/1.870604

    Article  CAS  Google Scholar 

  32. Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35:31–53. https://doi.org/10.1063/1.1937426

    Article  CAS  Google Scholar 

  33. Jonkers J, Hartgers A, Selen LJM, van der Mullen JAM, Schram DC (1999) The influence of nitrogen entrainment on argon plasmas created by the “Torche a injection axiale” (TIA). Plasma Sour Sci Technol 8:49–57. https://doi.org/10.1088/0963-0252/8/1/006

    Article  CAS  Google Scholar 

  34. Jonkers J, Selen LJM, vanderMullen JAM, Timmermans EAH, Schram DC (1997) Steep plasma gradients studied with spatially resolved Thomson scattering measurements. Plasma Sour Sci Technol 6:533–539. https://doi.org/10.1088/0963-0252/6/4/011

    Article  CAS  Google Scholar 

  35. Seo BH, Kim JH, You SJ (2017) Metastable argon atoms under significant neutral depletion in helicon plasmas by laser-induced fluorescence. Curr Appl Phys 17:1254–1259. https://doi.org/10.1016/j.cap.2017.05.010

    Article  Google Scholar 

  36. Singh H, Graves DB (2000) Measurements of the electron energy distribution function in molecular gases in a shielded inductively coupled plasma. J Appl Phys 88:3889–3898. https://doi.org/10.1063/1.1290450

    Article  CAS  Google Scholar 

  37. Kolokolov NB, Blagoev AB (1993) lonization and quenching of excited atoms with the production of fast electrons. Phys Usp 36:152–170. https://doi.org/10.1070/PU1993v036n03ABEH002138

    Article  Google Scholar 

  38. Franek JB, Nogami SH, Demidov VI, Koepke ME, Barnat EV (2015) Correlating metastable-atom density, reduced electric field, and electron energy distribution in the post-transient stage of a 1-Torr argon discharge. Plasma Sour Sci Technol 24:034009. https://doi.org/10.1088/0963-0252/24/3/034009

    Article  CAS  Google Scholar 

  39. Adams SF, Bogdanov EA, Demidov VI, Koepke ME, Kudryavtsev AA, Williamson JM (2012) Metastable atom and electron density diagnostic in the initial stage of a pulsed discharge in Ar and other rare gases by emission spectroscopy. Phys Plasmas 19:023510. https://doi.org/10.1063/1.3686142

    Article  CAS  Google Scholar 

  40. Tabata T, Shirai T, Sataka M, Kubo H (2006) Analytic cross sections for electron impact collisions with nitrogen molecules. At Data Nucl Data Tables 92:375–406. https://doi.org/10.1016/j.adt.2006.02.002

    Article  CAS  Google Scholar 

  41. Abdel Fattah E, Bazavan M, Sugai H (2011) Langmuir probe diagnostics of electron energy distributions with optical emission spectroscopy in capacitively coupled rf discharge in nitrogen. J Appl Phys 110:113303. https://doi.org/10.1063/1.3664858

    Article  CAS  Google Scholar 

  42. Rankovic D, Kuzmanovic M, Pavlovic MS, Stoiljkovic M, Savovic J (2015) Properties of argon-nitrogen atmospheric pressure DC Arc plasma. Plasma Chem Plasma Process 35:1071–1095. https://doi.org/10.1007/s11090-015-9637-6

    Article  CAS  Google Scholar 

  43. Zabeida O, Martinu L (1999) Ion energy distributions in pulsed large area microwave plasma. J Appl Phys 85:6366–6372. https://doi.org/10.1063/1.370139

    Article  CAS  Google Scholar 

  44. Lieberman MA, Lichtenberg AJ (2005) Principles of Plasma Discharges and Materials Processing. John Wiley & Sons. https://doi.org/10.1002/0471724254

    Article  Google Scholar 

  45. Hatami MM, Kourakis I (2022) Characteristics of plasma sheath in multi-component plasmas with three-ion species. Sci Rep 12:6905. https://doi.org/10.1038/s41598-022-10838-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Woller KB, Whyte DG, G. M. (2017) Wright. Broad ion energy distributions in helicon wave-coupled helium plasma. Phys Plasmas 24:053513. https://doi.org/10.1063/1.4983315

    Article  CAS  Google Scholar 

  47. Jiang XZ, Li WL, Wumaier TED, Yao HB (2019) Diagnostic study of argon and oxygen mixtures in dual-frequency capacitively coupled plasmas using quadrupole mass spectrometer. Chem Phys Lett 730:472–477. https://doi.org/10.1016/j.cplett.2019.06.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 11975163, 12175160)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyuan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Huang, T., Ji, P. et al. Influence of Nitrogen Seeding on the Electron and Ion Behaviors in Helicon Wave Excited Argon Plasma. Plasma Chem Plasma Process 43, 547–560 (2023). https://doi.org/10.1007/s11090-023-10311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10311-4

Keywords

Navigation