Skip to main content
Log in

Multichannel Gas-Phase Unimolecular Decomposition Reaction of C5-Perfluorinated Ketone, C5-PFK: Theoretical Kinetics Studies

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this research, the elementary process of thermal unimolecular decomposition of C5-PFK, as an alternative molecule for SF6, is studied theoretically. The energies of the reactants, transition states and products of the reaction are computed by the combination CBS-QB3 method. Next, the rate coefficients for the formation of various products at different temperatures and pressures are calculated by statistical rate theories such as RRKM and master equation formalism. For the bond dissociation processes, the rate coefficients are calculated by variable reaction coordinate-transition state theory (VRC-TST) which is a flexible transition-state version of RRKM theory. It is found that C–C bond dissociation processes and decomposition to C3F6 + CF3COF are main product channels. At temperature 500 K, the branching ratio of product channel C3F6 + CF3COF is calculated to be about 25%. However, as temperature increases, the branching ratio of the latter reaction deceases to reach a value of about 0.5% at 2000 K. The major product channel at all conditions is dissociation to CF3CFCF3 + CF3C(O).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhong L, Rong M, Wang X, Wu J, Han G, Lu Y, Yang A, Wu Y (2017) AIP Adv 7:075003

    Article  Google Scholar 

  2. Xiao S, Li Y, Zhang X, Tian S, Deng Z, Tang J (2017) AIP Adv 7:065017

    Article  Google Scholar 

  3. Preve C, Maladen R, Piccoz D (2016) IEEE Int Conf Dielectr 1:235–240

    Google Scholar 

  4. Boggs SA (1989) IEEE Elect Insul Mag 5:16–21

    Article  Google Scholar 

  5. Fang X, Hu X, Greet JM, Wu J, Han J, Su S, Zhang J, Hu J (2013) Environ Sci Technol 47:3848–3855

    Article  CAS  Google Scholar 

  6. Ko M, Sze N, Wang W-C, Shia G, Goldman A, Murcray F, Murcray D, Rinsland C (1993) J Geophys Res 98:10499–10507

    Article  Google Scholar 

  7. Beroual A, Haddad AM (2017) Energies 10:1216

    Article  Google Scholar 

  8. Li X, Zhao H, Murphy AB (2018) J Phys D Appl Phys 51:153001

    Article  Google Scholar 

  9. Okubo H, Beroual A (2011) IEEE Electr Insul Mag 27:34–42

    Article  Google Scholar 

  10. Preve C, Piccoz D, Maladen R, Biasse JM (2016) CIGRE. pp D1–205‏

  11. Mantilla JD, Gariboldi N, Grob S, Claessens M (2014) In: 2014 IEEE electrical insulation conference (EIC) pp 469–473

  12. Simka P, Ranjan N (2015) In: 19th International symposium on high voltage engineering pp 23–28

  13. Hyrenbach M, Hintzen T, Müller P, Owens J (2015) In: 23rd Int In Conf on Electricity Distribution (Lyon,) p 587

  14. Tatarinov AV, Bilera IV, Avtaeva SV, Shakhatov VA, Solomakhin PV, Maladen R, Prévé C, Piccoz D (2015) Plasma Chem Plasma Process 35:845–862

    Article  CAS  Google Scholar 

  15. Hyrenbach M, Paul TA, Owens J (2017) CIRED-Open Access Proc J 1:132–135

    Article  Google Scholar 

  16. Saxegaard M, Kristoffersen M, Stoller P, Seege, M, Hyrenbach M, Landsverk H (2015) CIRED Paper 926

  17. Fu Y, Wang X, Li X, Yang A, Han G, Lu Y, Wu Y, Rong M (2016) AIP Adv 6:085305

    Article  Google Scholar 

  18. Zhang X, Li Y, Xiao S, Tang J, Tian S, Deng Z (2017) Environ Sci Technol 51:10127–10136

    Article  CAS  Google Scholar 

  19. Zhang X, Li Y, Tian S, Xiao S, Chen D, Tang J, Zhuo R (2018) Chem Eng J 336:38–46

    Article  CAS  Google Scholar 

  20. Chen L, Li X, Xiong J, Murphy AB, Fu M, Zhuo R (2018) J Phys D Appl Phys 51:435202

    Article  Google Scholar 

  21. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloiono J, Zheng G, Sonneberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T Jr, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand K, Raghavachari J, Rendell A, Burant CJ, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin LR, Morokuma K, Zakrzewski VGG, Voth A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 A1 Revision. Gaussian Inc, Wallingford

    Google Scholar 

  25. Holbrook KA, Pilling MJ, Robertson SJ (1996) Unimlecular reactions. John Wiley & Sons Inc, Chichester

    Google Scholar 

  26. Gilbert RG, Smith SC (1990) Theory of unimolecualr and recombination reactions. Blackwell Scientific, Oxford

    Google Scholar 

  27. Troe J (1977) J Chem Phys 66:4745–4757

    Article  CAS  Google Scholar 

  28. Seakins PW, Robertson SH, Pilling MJ, Slagle IR, Gmurczyk GW, Bencsura A, Gutman D, Tsang W (1993) J Phys Chem 97:4450–4458

    Article  CAS  Google Scholar 

  29. Fernández-Ramos A, Ellingson BA, Meana-Pañeda R, Marques JMC, Truhlar DG (2007) Theor Chem Account 118:813–826

    Article  Google Scholar 

  30. Klippenstein SJ (1990) Chem Phys Lett 170:71–77

    Article  CAS  Google Scholar 

  31. Klippenstein SJ (1994) J Phys Chem 98:11459–11464

    Article  CAS  Google Scholar 

  32. Wardlaw DM, Marcus RA (1986) J Phys Chem 90:5383–5393

    Article  CAS  Google Scholar 

  33. Wardlaw DM, Marcus RA (1984) Chem Phys Lett 110:230–234

    Article  CAS  Google Scholar 

  34. Klippenstein SJ, Khundkar LR, Zewail AH, Marcus RA (1988) J Phys Chem 89:4761–4770

    Article  CAS  Google Scholar 

  35. Klippenstein SJ (1991) J Phys Chem 94:6469–6482

    Article  CAS  Google Scholar 

  36. Klippenstien SJ, Wagner AF, Dunbar RC, Wardlaw DM, Robertson SH (1999) VARIFLEX program, Version 1.0

Download references

Acknowledgements

We are grateful to Shahid Bahonar University of Kerman Research Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Saheb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zokaie, M., Saheb, V. Multichannel Gas-Phase Unimolecular Decomposition Reaction of C5-Perfluorinated Ketone, C5-PFK: Theoretical Kinetics Studies. Plasma Chem Plasma Process 42, 973–987 (2022). https://doi.org/10.1007/s11090-022-10255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10255-1

Keywords

Navigation