Skip to main content
Log in

Stability of Plasma Treated Non-vulcanized Polybutadiene Surfaces: Role of Plasma Parameters and Influence of Additives

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Surface modification studies of non-vulcanized BR elastomers (butadiene rubber) by low-pressure air plasma treatment and the effect on ageing and adhesion performances are presented in this paper. In particular, the influence of discharge power and distance from the glow discharge, and impact of antioxidant molecules in the BR formulation were examined. To characterize the changes to the BR surface, XPS spectroscopy, contact angle measurements, AFM nanoindentation experiments and tack measurements were utilized. Oxidation and crosslinking were the main mechanisms observed on the polymer chains regardless of the plasma conditions used. Beyond a certain threshold of plasma energy (in our case, discharge power of ~60 W and exposure time of ~30 s), a steady state was reached irrespective of the distance from the glow discharge. The presence of antioxidant molecules considerably reduced crosslinking phenomena while maintaining oxidation processes on polymer chains and increasing the nitrogen content in the near surface region. The mechanisms responsible for these differences have been identified. Interestingly, the COOH/C=O ratio changed according to the balance between oxidation and crosslinking. The hydrophobic recovery rate was mainly driven by temperature-dependent dynamics and varied according to the degree of crosslinking in the surface region. It was found to be lower in air atmosphere in the presence of antioxidant molecules. Finally, the presence of antioxidant molecules in the BR formulation allowed the adhesion performances after plasma exposure to significantly increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 6
Scheme 6
Scheme 7
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rauline R (2001) Michelin Recherche et Technique S.A., FR CA 2368002 A1

  2. Ringot C (2012) Michelin Recherche et Technique S.A., FR WO 2012152696 A1

  3. Chekanov Y A, Stubblefield R L (2012) Michelin Recherche et Technique S.A., FR WO2013147827 A1

  4. Franta I (1989) Elastomers and rubber compounding materials. Elsevier, Amsterdam

    Google Scholar 

  5. Wood LA (1940) Rubber Chem Technol 13:861–885

    Article  CAS  Google Scholar 

  6. Bacharouche J, Badique F, Fahs A, Spanedda MV, Geissler A, Malval JP, Vallat MF, Anselme K, Francius G, Frisch B, Hemmerle J, Schaaf P, Roucoules V (2013) ACS Nano 7:3457–3465

    Article  CAS  Google Scholar 

  7. Moyano MA, Martin Martinez JM (2014) Int J Adhes Adhes 55:106–113

    Article  CAS  Google Scholar 

  8. Ratway RJ, Balik CM (1997) J Polym Sci Polym Phys 35:1651–1660

    Article  CAS  Google Scholar 

  9. Mortazavi M, Nosonovsky M (2012) Appl Surf Sci 258:6876–6883

    Article  CAS  Google Scholar 

  10. Kaczorowski W, Szymanski W, Batory D et al (2015) Effect of plasma treatment on the surface properties of polydimethylsiloxane. J Appl Polym Sci. doi:10.1002/app.41635

    Google Scholar 

  11. Cantos-Delegido B, Martín-Martínez JM (2015) J Adhes Sci Technol 29:1301–1314

    Article  CAS  Google Scholar 

  12. Xiong LC, Chen P, Zhou QS (2014) J Adhes Sci Technol 28:1046–1054

    Article  CAS  Google Scholar 

  13. Kim J, Chaudhury MK, Owen MJ (2006) J Colloid Interface Sci 293:364–375

    Article  CAS  Google Scholar 

  14. Chen IJ, Linder E (2007) Langmuir 23:3118–3122

    Article  CAS  Google Scholar 

  15. Ding R, Leonov AI, Coran AY (1996) Rubber Chem Technol 69:81–91

    Article  CAS  Google Scholar 

  16. Tyczkowski J, Krawczyk I, Wozniak B (2005) In: D’Agostino R et al (eds) Plasma processes and polymers. Wiley, Weinheim

    Google Scholar 

  17. Tyczkowski J, Zielinski J, Kopa A, Krawczyk I, Wozniak B (2009) Plasma Process Polym 6:S419–S424

    Article  CAS  Google Scholar 

  18. Tyczkowski J, Makowski P, Krawczyk-Klys I, Wojcik J (2011) J Adhes Sci Technol 26:841–859

    Google Scholar 

  19. Tyczkowski J, Krawczyk I, Wozniak B, Martin-Martinez JM (2009) Eur Polym J 45:1826–1835

    Article  CAS  Google Scholar 

  20. Tyczkowski J, Krawczyk-Klys I, Kuberski S, Makowski P (2010) Eur Polym J 46:767–773

    Article  CAS  Google Scholar 

  21. Henry A, Vallat MF, Noël C, Belmonte T, Roucoules V (2015) Influence of plasma chamber set-up on the surface modification of non-vulcanized and pure SBR rubber treated at radio-frequencies air plasma. Plasma Process Polym. doi:10.1002/ppap.201400241

    Google Scholar 

  22. Ortiz-Magan AB, Pastor-Blas MM (2010) Plasma Chem Plasma Process 30:311–332

    Article  CAS  Google Scholar 

  23. Kempfer TW, Sinnott SB (2012) Plasma Process Polym 9:690–700

    Article  Google Scholar 

  24. Vonna L, Haidara H, Schultz J (2000) Macromolecules 33:4193–4197

    Article  CAS  Google Scholar 

  25. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Biophys J 82:2798–2810

    Article  CAS  Google Scholar 

  26. Polyakov P, Soussen C, Duan JB, Duval JFL, Brie D, Francius G (2011) PLoS ONE 6:e18887

    Article  CAS  Google Scholar 

  27. Mikrut M, Noordermeer JWM, Verbeek G (2009) J Appl Polym Sci 114:1357–1364

    Article  CAS  Google Scholar 

  28. Smitthipong W, Nardin M, Schultz J, Nipithakul T, Suchiva K (2004) J Adhes Sci Technol 18:1449–1463

    Article  CAS  Google Scholar 

  29. Befahy S, Lipnik P, Pardoen T, Nascimento C, Patris B, Bertrand P, Yunus S (2010) Langmuir 26:3372–3375

    Article  CAS  Google Scholar 

  30. Bacharouche J, Haidara H, Kunemann P, Vallat MF, Roucoules V (2013) Sensor Actuat A Phys 197:25–29

    Article  CAS  Google Scholar 

  31. Guillaneuf Y, Bertin D, Gigmes D, Versace DL, Lalevée J, Fouassier JP (2010) Macromolecules 43:2204–2212

    Article  CAS  Google Scholar 

  32. Rapta P, Vargova A, Polovkova J, Gatial A, Omelka L, Majzlik P, Breza M (2009) Polym Degrad Stabil 94:1457–1466

    Article  CAS  Google Scholar 

  33. Guyader Coquillat M (2007) Thesis, Ecole Nationale Supérieure d’Arts et Métiers

  34. David MO, Nipithakul T, Nardin M, Schultz J, Suchiva K (2000) J Appl Polym Sci 78:1486–1494

    Article  CAS  Google Scholar 

  35. Schultz J, Tsutsumi K, Donnet JB (1977) J Colloid Interface Sci 59:277–282

    Article  CAS  Google Scholar 

  36. Gent AN, Kim HJ (1990) Rubber Chem Technol 63:613–623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Roucoules.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, A., Vallat, MF., Schrodj, G. et al. Stability of Plasma Treated Non-vulcanized Polybutadiene Surfaces: Role of Plasma Parameters and Influence of Additives. Plasma Chem Plasma Process 36, 627–650 (2016). https://doi.org/10.1007/s11090-015-9659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9659-0

Keywords

Navigation