Skip to main content
Log in

Effects of Atmospheric-Pressure Plasma Treatment on the Processes Involved in Fabrics Dyeing

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A study is conducted on the surface modification of synthetic woven textiles, using atmospheric-pressure plasma, for controlled adhesion for subsequent processing or direct applications. The relation between the woven structural characteristics, the plasma parameters during sample exposure and the treatment outcomes is explored, pointing to complex aspects associated to the heterogeneous nature of the permeable samples, from mechanical, electrical and chemical point of view. The results point to the plasma effect on shifting the equilibrium between the processes involved in the fluid flow across the woven sample, due to enhanced inter-fiber capillary forces and accelerated diffusion, resulting in improved fabrics dyeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Misnon MI, Islam MM, Epaarachchi JA, Lau KT (2014) Mater Des 59:359–368

    Article  CAS  Google Scholar 

  2. Sharma M, Gao SL, Mader E, Sharma H, Wei LY, Bijwe J (2014) Compos Sci Technol 102:35–50

    Article  CAS  Google Scholar 

  3. Diban N, Stamatialis D (2014) J Chem Technol Biotechnol 89:633–643

    Article  CAS  Google Scholar 

  4. Machado AC, Vilela ALR, Souza PG, Pereira AG, Raposo LHA, Faria-E-Silva AL, Menezes MD, Soares PV (2014) Biosci J 30:914–924

    Google Scholar 

  5. Camacho LM, Dumee L, Zhang JH, Li JD, Duke M, Gomez J, Gray S (2013) Water 5:94–196

    Article  Google Scholar 

  6. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  7. Amberg M, Kasdallah C, Ritter A, Hegemann D (2010) J Adhes Sci Technol 24:123–134

    Article  CAS  Google Scholar 

  8. Jelil RA, Zeng XY, Koehl L, Perwelz A (2012) Text Res J 82:1859–1869

    Article  Google Scholar 

  9. Molina R, Esquena J, Erra P (2010) J Adhes Sci Technol 24:7–33

    Article  CAS  Google Scholar 

  10. Šimor M, Creyghton Y, Wypkema A, Zemek J (2010) J Adhes Sci Technol 24:77–97

    Article  Google Scholar 

  11. Kan CW, Yuen CWM (2010) J Adhes Sci Technol 24:99–111

    Article  CAS  Google Scholar 

  12. Shahid-ul-Islam Mohammad F (2015) Ind Eng Chem Res 54:3727–3745

    Article  Google Scholar 

  13. Ahmed NSE, El-Shishtawy RM (2010) J Mater Sci 45:1143–1153

    Article  CAS  Google Scholar 

  14. Kusano Y (2014) J Adhes 90:755–777

    Article  CAS  Google Scholar 

  15. Sun YY, Liang Q, Chi HJ, Zhang YJ, Shi Y, Fang DN, Li FX (2014) Fiber Polym 15:1–7

    Article  Google Scholar 

  16. Jafari R, Asadollahi S, Farzaneh M (2013) Plasma Chem Plasma Process 33:177–200

    Article  CAS  Google Scholar 

  17. Radetic M (2013) J Mater Sci 48:95–107

    Article  CAS  Google Scholar 

  18. Guimond S, Hanselmann B, Amberg M, Hegeman D (2010) Pure Appl Chem 82:1239–1245

    Article  CAS  Google Scholar 

  19. Radic N, Obradovic BM, Kostic M, Dojcinovic B, Hudcova M, Kuraica MM, Cernak M (2013) Plasma Chem Plasma Process 33:201–218

    Article  CAS  Google Scholar 

  20. Li GH, Liu H, Li TD, Wang JY (2012) Mater Sci Eng C 32:627–636

    Article  CAS  Google Scholar 

  21. Borcia C, Borcia G, Dumitrascu N (2009) IEEE Trans Plasma Sci 37:941–945

    Article  CAS  Google Scholar 

  22. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Surf Coat Technol 202:3427–3449

    Article  CAS  Google Scholar 

  23. Chiper A, Borcia G (2013) Plasma Chem Plasma Process 33:533–568

    Google Scholar 

  24. Borcia G, Cazan R, Borcia C (2011) Plasma Chem Plasma Process 31:729–740

    Article  CAS  Google Scholar 

  25. Borcia C, Punga IL, Borcia G (2014) Appl Surf Sci 317:103–110

    Article  CAS  Google Scholar 

  26. Borcia G, Anderson CA, Brown NMD (2006) Surf Coat Technol 201:3074–3081

    Article  CAS  Google Scholar 

  27. Bal K, Kothari VK (2010) IEEE Trans Dielectr Electr Insul 17:881–889

    Article  CAS  Google Scholar 

  28. Zhu CH, Takatera M (2013) JFBI 6:205–215

    Article  Google Scholar 

  29. Nabovati A, Llewellin EW, Sousa ACM (2010) Compos Part A 41:453–463

    Article  Google Scholar 

  30. Turan RB, Okur A (2012) Text Res J 82:1720–1737

    Article  CAS  Google Scholar 

  31. Zhu CH, Takatera M (2015) Text Res J 85:479–486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out in the CASPIA project, funded by the Executive Agency for Higher Education Research Development and Innovation, Romania, PN-II-PT-PCCA-2013 programme, Grant 254/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Borcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusu, G.B., Topala, I., Borcia, C. et al. Effects of Atmospheric-Pressure Plasma Treatment on the Processes Involved in Fabrics Dyeing. Plasma Chem Plasma Process 36, 341–354 (2016). https://doi.org/10.1007/s11090-015-9655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9655-4

Keywords

Navigation