Skip to main content
Log in

Physical Parameters and Chemical Composition of a Nitrogen DC Discharge with Water Cathode

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper reports the results of the experimental study and chemical composition modeling for a DC nitrogen discharge burning above water cathode in the pressure range of 0.1–1 bar and at discharge current of 40 mA. The gas temperature, vibrational temperatures, reduced electric field strength, cathode voltage drop, and emission intensities of some nitrogen bands were obtained from experiment. The modeling chemical composition of plasma was carried out on the basis of these data. At modeling, the combined solution of Boltzmann equation for electrons, equations of vibrational kinetics for ground states of N2, O2, H2O and NO molecules, equations of chemical kinetics and plasma conductivity equation were used. The calculations agree with the measured bands intensities for the second positive system of N2 and vibrational temperatures of \({\text{N}}_{2} ( {\text{C}}^{3}\Pi _{\text{u}} )\). In the frame of the model proposed, the data of other studies were explained. The second kind collision of electrons with N2 vibration excited states was shown to affect strongly the electron gas parameters. The electron average energy and electron density are given. The difference between the properties of the discharges in N2 and air at the same conditions are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bruggeman P, Leys C (2009) J Phys D Appl Phys 42(5):053001

    Article  Google Scholar 

  2. Tatarova E, Bundaleska N, Sarrette J, Ferreira CM (2014) Plasma Sources Sci Technol 23(6):063002

    Article  CAS  Google Scholar 

  3. Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, Xue Q (2014) Chem Eng J 236:348–368

    Article  CAS  Google Scholar 

  4. Titov VA, Rybkin VV, Maximov AI, Choi H-S (2005) Plasma Chem Plasma Process 25(5):502–518

    Article  Google Scholar 

  5. Verreycken T, Schram DC, Leys C, Bruggeman P (2010) Plasma Sources Sci Technol 19(4):045004

    Article  Google Scholar 

  6. Li L, Nikiforov A, Xiong Q, Lu X, Taghizadeh L, Leys C (2012) J Phys D Appl Phys 45(12):125201

    Article  Google Scholar 

  7. Nikiforov A, Li L, Xiong Q, Leys C, Lu XP (2011) Eur Phys J Appl Phys 56(2):24009

    Article  Google Scholar 

  8. Ito H, Kano H (2008) Appl Phys Express 1:10601–10603

    Google Scholar 

  9. Liu DX, Bruggeman P, Iza F, Rong MZ, Kong MC (2010) Plasma Sources Sci Technol 19(2):025018

    Article  Google Scholar 

  10. Zhang S, Van Gaens W, Van Gessel B, Hofman S, Van Veldhuizen E, Bogaerts A, Bruggeman P (2013) J Phys D Appl Phys 46(20):205202

    Article  Google Scholar 

  11. Van Gaens W, Bruggeman PJ, Bogaerts A (2014) New J Phys 16:063054

    Article  Google Scholar 

  12. Shutov DA, Smirnov SA, Bobkova ES, Rybkin VV (2014) Plasma Chem. DOI, Plasma Process. doi:10.1007/s11090-014-9596-3

    Google Scholar 

  13. Bobkova ES, Smirnov SA, Zalipaeva YV, Rybkin VV (2014) Plasma Chem Plasma Process 34(4):721–743

    Article  CAS  Google Scholar 

  14. Bruggeman P, Schram D, Gonzalez MA, Rego R, Kong MG, Leys C (2009) Plasma Sources Sci Technol 18(2):025017

    Article  Google Scholar 

  15. Titov VA, Rybkin VV, Smirnov SA, Kulentsan AN, Choi H-S (2006) Plasma Chem Plasma Process 26(6):543–555

    Article  CAS  Google Scholar 

  16. Raizer YuP (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  17. Gordiets BF, Ferreira CM, Guerra VL, Loureiro J, Nahorny J, Pagnon D, Touzeau Vialle M (1995) IEEE Trans Plasma Sci 23(23):750–768

    Article  CAS  Google Scholar 

  18. Kajita S, Ushiroda S, Kondo Y (1990) J Phys D Appl Phys 67(9):4015–4023

    Article  CAS  Google Scholar 

  19. Rybkin VV, Titov VA, Kholodkov IV (2008) Izv Vyssh Uchebn Zaved Khim Khim Tekhnol 51(3):3–10 (in Russian)

    CAS  Google Scholar 

  20. Rybkin VV, Titov VA, Kholodkov IV (2009) Izv Vyssh Uchebn Zaved Khim Khim Tekhnol 52(12):3–10 (in Russian)

    CAS  Google Scholar 

  21. Laher RR, Gilmore FR (1990) J Phys Chem Ref Data 19(1):277–304

    Article  CAS  Google Scholar 

  22. Louriero J, Ferreira CM (1989) J Phys D Appl Phys 22(11):1680–1691

    Article  Google Scholar 

  23. Diamy A-M, Legrand J-C, Smirnov SA, Rybkin VV (2005) Contrib Plasma Phys 45(1):5–21

    Article  CAS  Google Scholar 

  24. Schwartz RN, Slawsky ZI, Herzfeld KF (1952) J Chem Phys 20(10):1591

    Article  CAS  Google Scholar 

  25. Capitelli M (ed) (1986) Nonequilibrium vibrational kinetics. Springer, Berlin

    Google Scholar 

  26. Kiefer JH (1972) J Chem Phys 57(5):938–1956

    Article  Google Scholar 

  27. Mnatsakanyan AK, Naidis GV (1985) High Temperature (Teplofyzika Vysokikh Temperatur) 23(4):640–646 (in Russian)

    CAS  Google Scholar 

  28. Salnikov VA, Starik AM (1995) High Temperature (Teplofyzika Vysokikh Temperatur) 33(1):121–133 (in Russian)

    Google Scholar 

  29. Wysong IJ (1994) J Chem Phys 101(4):2800–2810

    Article  CAS  Google Scholar 

  30. Frost MJ, Islam M, Smith IWM (1994) Can J Chem 72(3):606–611

    Article  CAS  Google Scholar 

  31. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules. Litton Educational Publishing, Inc, New York

    Book  Google Scholar 

  32. Glushko VP (ed) (1978) Thermodynamic properties of individual substances. Handbook. Nauka, Moscow (in Russian)

    Google Scholar 

  33. Radtsig AA, Smirnov BM (1980) Handbook on atomic and molecular physics. Atomizdat, Moscow (in Russian)

    Google Scholar 

  34. Herron JT (1999) J Phys Chem Ref Data 28(5):1453–1483

    Article  CAS  Google Scholar 

  35. Javoy S, Naudet V, Abid S, Paillard CE (2003) Exp Thermal Fluid Sci 27(4):371–377

    Article  CAS  Google Scholar 

  36. Clyne MAA, Stedman DH (1967) J Phys Chem 71(9):3071–3073

    Article  CAS  Google Scholar 

  37. Nicholls RW (1964) Ann Geophys 20:144–151

    CAS  Google Scholar 

  38. Pancheshnyi SV, Starikovskaia SM, Starikovskii AY (1998) Chem Phys Lett 294(6):523–527

    Article  CAS  Google Scholar 

  39. Slovetskiy DI (1980) Mechanism of chemical reactions in the non-equilibrium plasma. Nauka, Moscow (in Russian)

    Google Scholar 

  40. Tikhonov AN, Arsenin VY (1974) Methods of solution of incorrect tasks. Nauka, Moscow (in Russian)

    Google Scholar 

  41. Grigoriev IS, Meiylikhov EZ (eds) (1991) Physical quantities. Handbook. Energoatomizdat, Moscow (in Russian)

    Google Scholar 

  42. Staack D, Farouk B, Gutsol A, Fridman A (2005) Plasma Sources Sci Technol 14(4):700–711

    Article  CAS  Google Scholar 

  43. Kim YH, Hong YJ, Baik KY, Kwon GC, Vhoi JJ, Cho GS, Uhm HS, Kim DY, Choi EH (2014) Plasma Chem Plasma Process 34(3):457–472

    Article  CAS  Google Scholar 

  44. Smirnov SA, Rybkin VV, Kholodkov IV, Titov VA (2002) High Temp 40(3):323–330

    Article  CAS  Google Scholar 

  45. Bobkova ES, Rybkin VV (2013) High Temp 51(6):747–752

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the RFBR grant, project number 14-02-01113 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Rybkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, S.A., Shutov, D.A., Bobkova, E.S. et al. Physical Parameters and Chemical Composition of a Nitrogen DC Discharge with Water Cathode. Plasma Chem Plasma Process 35, 639–657 (2015). https://doi.org/10.1007/s11090-015-9626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9626-9

Keywords

Navigation