Skip to main content

Advertisement

Log in

Influence of Plasma Treatments on the Hemocompatibility of PET and PET + TiO2 Films

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

A Correction to this article was published on 06 June 2020

This article has been updated

Abstract

A dielectric barrier discharge (DBD) in helium was used to ameliorate the interface between the blood and the surface of polymeric implants: polyethylene terephthalate (PET) and PET with titanium oxide (PET + TiO2). A higher crystallinity degree was found for the DBD treated samples. The wettability of polymers was improved after the treatment. The chemical composition, analyzed by infrared spectroscopy was preserved during the DBD treatment. The surface modifications have been correlated with polymers hemocompatibility. Concerning the polymer surface–blood interaction, the treatment induced a decrease of the interfacial tension between the blood components and the treated surfaces. The in vitro tests of hemocompatibility showed no perturbation in the blood composition when the polymer samples are present in the blood volume. An interesting result is related to the whole blood clotting time that shows a dramatic increase on the treated surfaces. Moreover, the coagulation kinetics on the treated surfaces is modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 06 June 2020

    The Editor-in-Chief would like to alert readers that due to an administrative error, the article [1] has been republished in the same journal as [2]. The correct citation for this article should be the original publication [1].

References

  1. Mao C, Qiu Y, Sang H, Mei H, Zhu A, Shen J, Lin S (2004) Adv Colloid Interface Sci 110(1–2):5

    Article  Google Scholar 

  2. Chu PK, Chen JY, Wang LP, Huang N (2002) Mater Sci Eng R 36(5–6):143

    Article  Google Scholar 

  3. Huang N, Yang P, Leng YX, Wang J, Sun H, Chen JY, Wan GJ (2004) Surf Coat Technol 186(1–2):218

    Article  Google Scholar 

  4. Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A (2006) Plasma Chem Plasma Process 26(4):425

    Article  Google Scholar 

  5. Schroder K, Meyer-Plath A, Keller D, Besch W, Babucke G, Ohl A (2001) Contrib Plasma Phys 41(6):562

    Article  Google Scholar 

  6. Wang J, Pan CJ, Huang N, Sun H, Yang P, Leng YX, Chen JY, Wan GJ, Chu PK (2005) Surf Coat Technol 196(1–3):307

    Article  Google Scholar 

  7. Okazaki K, Nozaki T (2002) Pure Appl Chem 74(3):447

    Article  Google Scholar 

  8. Dumitrascu N, Topala I, Popa G (2005) IEEE Trans Plasma Sci 33(5):1710

    Article  ADS  Google Scholar 

  9. Visser SA, Hergenrother RW, Cooper SL (1996) In: Ratner BD, Hoffman AS, Schoen FS, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Academic Press, San Diego, p 50

    Google Scholar 

  10. Pu FR, Williams RL, Markkula TK, Hunt JA (2002) Biomaterials 23(11):2411

    Article  Google Scholar 

  11. Sanders JE, Bale SD, Neumann T (2002) J Biomed Mater Res 62(2):222

    Article  Google Scholar 

  12. Zhang F, Zheng Z, Chen Y, Liu X, Chen A, Jiang Z (1998) J Biomed Mater Res 42(1):128

    Article  Google Scholar 

  13. Strohm H, Sgraja M, Bertling J, Lobmann P (2003) J Mat Sci 38(8):1605

    Article  Google Scholar 

  14. Pena J, Vallet-Regi M, San Roman J (1997) J Biomed Mater Res 35(1):129

    Article  Google Scholar 

  15. Clark DT, Dilks A (1978) J Polym Sci Polym Chem Ed 16:911

    Article  Google Scholar 

  16. Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York, p 184

    Google Scholar 

  17. Kwok SCH, Wang J, Chu PK (2005) Diamond Relat Mater 14(1):78

    Article  Google Scholar 

  18. Agathopoulos S, Nikolopoulos P (1995) J Biomed Mater Res 29(4):421

    Article  Google Scholar 

  19. Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley Interscience, New York, p 335

    Google Scholar 

  20. Cole KC, Ajji A, Pellerin E (2002) Macromolecules 35(3):770

    Article  Google Scholar 

  21. Koenig JL (1999) Spectroscopy of polymers. Elsevier, New York, p 90

    Google Scholar 

  22. Cenni E, Granchi D, Ciapetti G, Stea S, Verri E, Gamberini S, Gori A, Pizzoferrato A, Zucchelli P (1997) J Mater Sci Mater Med 8:771

    Article  Google Scholar 

  23. Balakrishnan B, Kumar DS, Yoshida Y, Jayakrishnan A (2005) Biomaterials 26(17):3495

    Article  Google Scholar 

  24. Fechine GJM, Souto-Maior RM, Rabello MS (2002) J Mater Sci 37(23):4979

    Article  Google Scholar 

  25. Durell M, Macdonald JE, Trolley D, Wehrum A, Jukes PC, Jones RAL, Walker CJ, Brown S (2002) Europhys Lett 58(6):844

    Article  ADS  Google Scholar 

  26. Lippert T (2005) Plasma Proc Polym 2(7):525

    Article  Google Scholar 

  27. Chan CM, Ko TM, Hiraoka H (1996) Surf Sci Rep 24(1–2):1

    Article  Google Scholar 

  28. Ruckenstein E, Gourisankar SV (1986) Biomaterials 7(6):403

    Article  Google Scholar 

  29. Li ZF, Ruckenstein E (2004) J Colloid Interface Sci 269(1):62

    Article  Google Scholar 

  30. Chen JY, Leng YX, Tian XB, Wang LP, Huang N, Chu PK, Yang P (2002) Biomaterials 23(12):2545

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank PhD Cristina Morariu, Hematology Laboratory, Military Hospital, Iasi, Romania, for its help with the hemocompatibility tests. This work was supported by the Romanian National University Research Council (CNCSIS) under Grant 1461/2005–2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionut Topala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topala, I., Dumitrascu, N. & Pohoata, V. Influence of Plasma Treatments on the Hemocompatibility of PET and PET + TiO2 Films. Plasma Chem Plasma Process 28, 535–551 (2008). https://doi.org/10.1007/s11090-008-9136-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9136-0

Keywords

Navigation