Skip to main content
Log in

Microstructure and Hot Corrosion Property of a Si–Co–Y Diffusion Coating Deposited on TiAl–Nb Alloy

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Si–Co–Y diffusion coatings were deposited on TiAl–Nb alloy using pack cementation process. The influence of activators and deposition temperatures on the coating structures was investigated, alongside the coating formation process and hot corrosion performance of the optimized coating in molten salt of 25%NaCl + 75%K2SO4 at 850 °C. The results show that a dense and compact Si–Co–Y diffusion coating can be prepared on TiAl–Nb alloy, with a multi-layered structure including an outmost layer of (Ti, X)Si2 (X represents Co, Al, Nb, Y), an outer layer composed of TiSi2 + Ti5Si4 + Ti5Si3 mixtures, a middle layer of Ti5Si3, and an inner layer of TiAl2. The coating prepared with AlCl3·6H2O and NH4Cl had many pores. Increase in deposition temperature led to a higher coating growth rate within the range of 1050–1100 °C, but temperature exceeding 1100 °C caused the formation of intensive holes in the coating. Hot corrosion tests at high temperatures proved that the Si–Co–Y diffusion coating prepared on TiAl–Nb alloy exhibited excellent hot corrosion resistance in 25%NaCl–75%K2SO4 molten at 850 °C. A protective hot corrosion product scale composed of a TiO2 + Na2SiO3 + Na2TiO3 outer layer and an Al2O3 middle layer, formed on coating after hot corrosion for 50 h. The scale can effectively inhibit the inward diffusion of corrosion medial of O, Cl and S elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Wakabayashi, L. J. Signori, A. Shaaban, et al., MRS Advances 4, 1465 (2019).

    Article  CAS  Google Scholar 

  2. D. V. Pavlenko, Y. O. Belokon, and D. V. Tkach, Materials Science 55, 908 (2020).

    Article  CAS  Google Scholar 

  3. S. Q. Wang, F. Q. Xie, X. Q. Wu, and L. Y. Chen, Journal of Alloys and Compounds 788, 632 (2019).

    Article  CAS  Google Scholar 

  4. J. Dai, C. Sun, A. Wang, et al., Corrosion Science 184, 109336 (2021).

    Article  CAS  Google Scholar 

  5. Z. K. Wei, X. Li, W. Lv, et al., Journal of Materials Engineering and Performance 32, 4796 (2023).

    Article  CAS  Google Scholar 

  6. S. Tian, Y. Zhang, A. He, et al., Surface and Coatings Technology 444, 128687 (2022).

    Article  CAS  Google Scholar 

  7. X. Gong, R. R. Chen, Y. Wang, et al., Frontiers in Materials 8, 710431 (2021).

    Article  Google Scholar 

  8. J. J. Wu, H. J. Yan, F. H. Cao, et al., Surface and Coatings Technology 422, 127495 (2021).

    Article  CAS  Google Scholar 

  9. S. Wang, F. Xie, X. Wu, et al., Journal of Alloys and Compounds 828, 154271 (2020).

    Article  CAS  Google Scholar 

  10. P. Zhang and X. P. Guo, Corrosion Science 71, 10 (2013).

    Article  CAS  Google Scholar 

  11. Y. Q. Qiao, Z. Shen, and X. P. Guo, Corrosion Science 93, 126 (2015).

    Article  CAS  Google Scholar 

  12. J. Huang, F. Zhao, X. Cui, et al., Applied Surface Science 582, 152444 (2022).

    Article  CAS  Google Scholar 

  13. X. Ma, Y. He, J. Lin, et al., Surface and Coatings Technology 206, 2690 (2012).

    Article  CAS  Google Scholar 

  14. Y. Qiao, J. Kong, R. Zhou, et al., Vacuum 161, 314 (2019).

    Article  CAS  Google Scholar 

  15. M. Qiao and C. Zhou, Corrosion science 75, 454 (2013).

    Article  CAS  Google Scholar 

  16. K. L. Wang, Q. B. Zhang, M. L. Sun, et al., Journal of materials processing technology 139, 448 (2003).

    Article  CAS  Google Scholar 

  17. A. S. Ramos, C. A. Nunes, and G. C. Coelho, Materials Characterization 56, 107 (2006).

    Article  Google Scholar 

  18. H. Clemens and W. Smarsly, Advanced Materials Research 278, 551 (2011).

    Article  CAS  Google Scholar 

  19. Z. Sun, W. Wu, Y. Chen, et al., Corrosion Science 185, 109399 (2021).

    Article  CAS  Google Scholar 

  20. Y. Q. Li, J. L. Li, C. Qin, et al., Journal of Central South University 27, 381 (2020).

    Article  CAS  Google Scholar 

  21. J. Xiang, F. Xie, X. Wu, and S. Wang, Intermetallics 132, 107151 (2021).

    Article  CAS  Google Scholar 

  22. M. K. Marzena and G. Elzbieta, Corrosion Science 115, 18 (2017).

    Article  Google Scholar 

  23. Y. Mishin and Chr Herzig, Acta Materialia 48, 589 (2000).

    Article  CAS  Google Scholar 

  24. J. He, X. Guo, and Y. Qiao, Transactions of Nonferrous Metals Society of China 31, 207 (2021).

    Article  CAS  Google Scholar 

  25. K. Rubacha, E. Godlewska, and K. Mars, Corrosion Science 118, 158 (2017).

    Article  CAS  Google Scholar 

  26. J. Xiang, F. Xie, X. Wu, et al., Surface and Coatings Technology 419, 127282 (2021).

    Article  CAS  Google Scholar 

  27. L. K. Wu, J. J. Wu, W. Y. Wu, H. J. Yan, et al., Corrosion Science 174, 108827 (2020).

    Article  CAS  Google Scholar 

  28. T. Ishitsuka and K. Nose, Corrosion Science 44, 247 (2002).

    Article  CAS  Google Scholar 

  29. Y. Qiao, X. Guo, and X. Li, Corrosion Science 91, 75 (2015).

    Article  CAS  Google Scholar 

  30. T. Dudziak, P. Datta, H. Du, et al., Central European Journal of Engineering 3, 722 (2013).

    CAS  Google Scholar 

  31. V. Babic, C. Geers, and I. Panas, Oxidation of Metals 93, 229 (2019).

    Article  Google Scholar 

  32. H. Li, M. Qiao, and C. Zhou, Materials Chemistry and Physics 143, 915 (2014).

    Article  CAS  Google Scholar 

  33. X. Zhao and C. Zhou, Corrosion Science 86, 223 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by The National Natural Science Foundation of China (No. 51961003), the Major Project of Science and Technology Department of Sichuan province (No. 22SYSX0141), and the Project of the Key Laboratory of Mechanical Structure Optimization & Material Application Technology of Luzhou (SCHYZSA-2023-01, SCHYZSB-2023-01).

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to influence the work reported in this paper.

Corresponding author

Correspondence to Xuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lv, W., Xie, X. et al. Microstructure and Hot Corrosion Property of a Si–Co–Y Diffusion Coating Deposited on TiAl–Nb Alloy. High Temperature Corrosion of mater. 101, 169–185 (2024). https://doi.org/10.1007/s11085-023-10206-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10206-x

Keywords

Navigation