Skip to main content
Log in

Oxidation Behaviour of New Nickel-Base Superalloys with Varying Aluminium: Niobium Ratio

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

New Ni-base superalloys with higher temperature capability are required for future, more efficient gas turbine engines. In designing such alloys, careful consideration is required of the elemental concentrations to ensure that a suitable balance of mechanical properties and environmental resistance is obtained. In this study, the oxidation resistance of a series of new Ni-base superalloys with varying Al:Nb ratio has been assessed through long-term exposures in air at elevated temperature. The oxide scale was characterised using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and quantitative measurements of oxide scale dimensions. The alloys were found to form continuous chromia scales at 700 °C and outperformed several current commercial superalloys. However, following exposure at 800 °C, significant microstructural degradation was observed due to precipitation of the δ phase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The underlying research data required to reproduce these findings are available from the University of Cambridge repository [101]: https://doi.org/10.17863/CAM.86804

References

  1. Q. Huang, M. Zhang, and S. Liu, Sustainability. 11, 2019 (1).

    Google Scholar 

  2. Melby P, Mayer RH. Benefit potential of continuous climb and descent operations. In: 26th International Congress of the Aeronautical Sciences (ICAS). 2008. pp 1–10. https://doi.org/10.2514/6.2008-8920.

  3. D. F. Paulonis, J. M. Oblak, and D. S. Duvall, Transactions of ASM. 62, 1969 (611).

    CAS  Google Scholar 

  4. R. C. Reed, The Superalloys: Fundamentals and Applications. The Superalloys: Fundamentals and Applications. (Cambridge, Cambridge University Press), 2006. https://doi.org/10.1017/CBO9780511541285.

  5. R. Darolia, International Materials Reviews. 64, 2019 (355–380).

    Article  CAS  Google Scholar 

  6. T. A. Phillips, Recycling of Iron, Steel, and Superalloys. ASM Handbook: Properties & Selection: Irons, Steels and High-Performace Alloys. 1, 1990 (1023–1033).

  7. F. R. Preli, D. Furrer, Lessons learned from the development, application and advancement of alloy 718. 8th International Symposium on Superalloy 718 and Derivatives. 2014;3–14. https://doi.org/10.1002/9781119016854.ch1.

  8. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Metallurgical Transactions A. 19, 1988 (453).

    Article  Google Scholar 

  9. J. F. Radavich, The Physical Metallurgy of Cast and Wrought Alloy 718. In: Superalloy 718 - Metallurgy and Applications. 1989.229–240. https://doi.org/10.7449/1989/superalloys_1989_229_240.

  10. R. L. Kennedy, Allvac ®718Plus™, Superalloy For The Next Forty Years. in Superalloys 718, 625, 706 and Derivatives, ed. E. A. Loria (Metals & Materials Society, The Minerals, 2005), pp. 1–14.

    Google Scholar 

  11. T. Fedorova, J. Rösler, J. Klöwer, B. Gehrmann, Invention of a new 718-type Ni-Co Superalloy. In: 8th International Symposium on Superalloy 718 and Derivatives. 2014.587–599.

  12. A. Devaux, B. Picque, M. Gervais, E. Georges, T. Poulain, and T. Heritier P. AD730™—A New Nickel-based Superalloy for High Temperature Engine Rotative Parts. In: Superalloys 2012 (Twelfth International Symposium) (Wiley, New York, 2012), pp. 911–919. https://doi.org/10.7449/2012/Superalloys_2012_911_919.

  13. G. R. Wallwork and A. Z. Hed, Oxidation of Metals. 3, 1971 (171).

    Article  CAS  Google Scholar 

  14. C. Wagner, Journal of The Electrochemical Society. 103, 1956 (571).

    Article  CAS  Google Scholar 

  15. C. Wagner, Chemie. 63, 1959 (772–782).

    CAS  Google Scholar 

  16. C. Wagner, Journal of The Electrochemical Society. 99, 1952 (369).

    Article  CAS  Google Scholar 

  17. E. Essuman, G. H. Meier, J. Żurek, M. Hänsel, and W. J. Quadakkers, Oxidation of Metals. 69, 2008 (143).

    Article  CAS  Google Scholar 

  18. J. Zurek, G. H. Meier, E. Wessel, L. Singheiser, and W. J. Quadakkers, Materials and Corrosion. 62, 2011 (504).

    Article  CAS  Google Scholar 

  19. G. C. Wood, Oxidation of Metals. 2, 1970 (11).

    Article  CAS  Google Scholar 

  20. G. C. Wood, T. Hodgkiess, and D. P. Whittle, Corrosion Science. 6, 1966 (129).

    Article  CAS  Google Scholar 

  21. R. A. Rapp, Acta Metallurgica. 9, 1961 (730).

    Article  CAS  Google Scholar 

  22. P. Kontis, Z. Li, M. Segersäll, et al., Metallurgical and Materials Transactions A. 49A, 2018 (4236).

    Article  Google Scholar 

  23. Gao M, Dwyer DJ, Wei RP. Chemical and Microstructural Aspects of Creep Crack Growth in Inconel 718 Alloy. In: Superalloys 718, 625, 706 and Various Derivatives (1994). TMS; 1994.581–592. https://doi.org/10.7449/1994/Superalloys_1994_581_592.

  24. Gabb TP, Telesman J, Kantzos PT, Smith JW, Browning PF. Effects of High Temperature Exposures on Fatigue Life of Disk Superalloys. In: Superalloys 2004 (Tenth International Symposium). TMS; 2004.269–274. https://doi.org/10.7449/2004/Superalloys_2004_269_274.

  25. A. Karabela, L. G. Zhao, B. Lin, J. Tong, and M. C. Hardy, Materials Science and Engineering: A. 567, 2013 (46).

    Article  CAS  Google Scholar 

  26. A. Pineau and S. D. Antolovich, Eng Fail Anal. 16, 2009 (2668).

    Article  CAS  Google Scholar 

  27. T. Connolley, M. J. Starink, and P. A. S. Reed,. Effect of Oxidation on High Temperature Fatigue Crack Initiation and Short Crack Growth in Inconel 718. In Superalloys 2000 (Ninth International Symposium). TMS; 2000.5:435–444.

  28. V. Garat, J. Deleume, J.-M. Cloue, and E. Andrieu, High Temperature Intergranular Oxidation of Alloy 718. In Superalloys 718, 625, 706 and Various Derivatives (2005). TMS; 2005.559–569. https://doi.org/10.7449/2005/Superalloys_2005_559_569.

  29. C. K. Sudbrack, S. L. Draper, T. T. Gorman, J. Telesman, T. P. Gabb, and D. R. Hull, Oxidation and the Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy Disk Superalloy. In: Superalloys 2012 (Wiley, Hoboken, NJ, USA, 2012), pp. 863–872. https://doi.org/10.1002/9781118516430.ch95.

  30. R. Jiang, N. Gao, M. Ward, Z. Aslam, J. C. Walker, P. A. S. Reed, Effects of Oxidation on Fatigue Crack Initiation and Propagation in an Advanced Disk Alloy. In: Superalloys 2016 (Wiley, Hoboken, NJ, USA, 2016), pp. 907–916. https://doi.org/10.1002/9781119075646.ch97.

  31. D. A. Woodford, Energy Materials. 1, 2006 (59).

    Article  CAS  Google Scholar 

  32. T. P. Gabb, J. Gayda, J. Telesman, L. J. Ghosn, and A. Garg, International Journal of Fatigue. 48, 2013 (55).

    Article  CAS  Google Scholar 

  33. R. M. Kearsey, J. Tsang, S. Oppenheimer, and E. Mcdevitt, Superalloys 2012, 2012 (741–749). https://doi.org/10.1002/9781118516430.ch82.

    Article  Google Scholar 

  34. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals. Introduction to the High Temperature Oxidation of Metals, Second Edition (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9781139163903.

  35. P. Kofstad, High Temperature Oxidation of Metals (Wiley, New York, 1966).

  36. G. R. Wallwork, Reports on Progress in Physics. 39, 1976 (401).

    Article  CAS  Google Scholar 

  37. R. Pillai, H. Ackermann, H. Hattendorf, and S. Richter, Corros Sci. 75, 2013 (28).

    Article  CAS  Google Scholar 

  38. U. Brill, and J. Klöwer, Zeitschrift Metall. 1997;263.

  39. C. S. Giggins and F. S. Pettit, Journal of The Electrochemical Society. 118, 1971 (1782).

    Article  CAS  Google Scholar 

  40. A. Engström and J. Ågren, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques. 87, 1996 (92).

    Google Scholar 

  41. A. Chyrkin, W. G. Sloof, R. Pillai, et al., Materials at High Temperatures. 32, 2015 (102).

    Article  CAS  Google Scholar 

  42. N. C. Oforka and B. B. Argent, Journal of the Less Common Metals. 114, 1985 (97).

    Article  CAS  Google Scholar 

  43. D. J. Young, Alloy Oxidation III. In: High Temperature Oxidation and Corrosion of Metals (Elsevier, AMsterdam, 2016), pp. 335–392. https://doi.org/10.1016/B978-0-08-100101-1.00007-8.

  44. S. W. Guan, and W. W. Smeltzer, Oxidation of Metals 1994 42:5. 1994;42:375.

  45. D. J. Young, A. Chyrkin, J. He, D. Grüner, and W. J. Quadakkers, Oxidation of Metals. 79, 2013 (405).

    Article  CAS  Google Scholar 

  46. V. P. Deodeshmukh, S. J. Matthews, and D. L. Klarstrom, The International Journal of Hydrogen Energy. 36, 2011 (4580).

    Article  CAS  Google Scholar 

  47. F. H. Stott and G. C. Wood, Corrosion Science. 11, 1971 (799).

    Article  Google Scholar 

  48. L. Hu, D. B. Hovis, and A. H. Heuer, Oxidation of Metals. 73, 2010 (275).

    Article  CAS  Google Scholar 

  49. T. J. Nijdam, L. P. H. Jeurgens, and W. G. Sloof, Materials at High Temperatures. https://doi.org/10.1179/mht.2003.037. 20, 2014 (311).

  50. S. Yoneda, S. Hayashi, I. Saeki, and S. Ukai, Oxidation of Metals. 86, 2016 (357).

    Article  CAS  Google Scholar 

  51. S. Yoneda and S. Hayashi, Oxidation of Metals. 97, 2022 (195).

    Article  CAS  Google Scholar 

  52. H. Nagai and M. Okabayashi, Transactions of the Japan Institute of Metals. 22, 1981 (691).

    Article  CAS  Google Scholar 

  53. S. Cruchley, H. E. Evans, M. P. Taylor, M. C. Hardy, and S. Stekovic, Corrosion Science 75, 2013 (58).

    Article  CAS  Google Scholar 

  54. A. N. Blacklocks, A. Atkinson, R. J. Packer, and S. L. P. Savin, Chadwick A v. Solid State Ion. 177, 2006 (2939).

    Article  CAS  Google Scholar 

  55. C. A. Barrett, A statistical analysis of elevated temperature gravimetric cyclic oxidation data of 36 Ni- and Co-base superalloys based on an oxidation attack parameter. NASA Technical Report 19930008880. 1992;1.

  56. J. L. Smialek and P. J. Bonacuse, Materials at High Temperatures. 33, 2016 (489).

    Article  CAS  Google Scholar 

  57. J. Smialek, A. Garg, T. Gabb, and R. MacKay, Metals (Basel). 5, 2015 (2165).

    Article  Google Scholar 

  58. P. A. Ramos, R. S. Coelho, H. C. Pinto, F. Soldera, F. Mücklich and P.P. Brito, Materials Chemistry and Physics. 263, 2021 (124361).

  59. J.-J. Yang, C.-M. Kuo, P.-T. Lin, et al., Journal of Alloys and Compounds . 825, 2020 153983.

    Article  CAS  Google Scholar 

  60. Y.-X. Xu, J.-T. Lu, X.-W. Yang, J.-B. Yan, and W.-Y. Li, Corrosion Science 127, 2017 (10).

    Article  CAS  Google Scholar 

  61. F. Weng, H. Yu, C. Chen, and K. Wan, Surface and Interface Analysis. 47, 2015 (362).

    Article  CAS  Google Scholar 

  62. F. Weng, H. Yu, K. Wan, and C. Chen, Journal of Material Research. 29, 2014 (2596).

    Article  CAS  Google Scholar 

  63. F. Weng, H. Yu, C. Chen, and K. Wan, Materials and Manufacturing Processes. 30, 2015 (1364).

    Article  CAS  Google Scholar 

  64. K. A. Christofidou, M. C. Hardy, H. Y. Li, et al., Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 49, 2018 (3896).

    Article  CAS  Google Scholar 

  65. L. B. Alkmin, N. Chaia, S. Utada, et al., Metallurgical and Materials Transactions A. 52, 2021 (2589).

    Article  CAS  Google Scholar 

  66. H. J. Christ, L. Berchtold, and H. G. Sockel, Oxidation of Metals 1986 26:1. 1986;26:45.

  67. A. Chyrkin, K. O. Gunduz, I. Fedorova, et al., Corrosion Science. 205, 2022 110382.

    Article  CAS  Google Scholar 

  68. C. Juillet, A. Oudriss, J. Balmain, X. Feaugas, and F. Pedraza, Corrosion Science. 142, 2018 (266).

    Article  CAS  Google Scholar 

  69. H. Buscail, R. Rolland, C. Issartel, et al., Journal of Material Science. 46, 2011 (5903).

    Article  CAS  Google Scholar 

  70. P. Huczkowski, W. Lehnert, H. H. Angermann, et al., Materials and Corrosion. 68, 2017 (159).

    Article  CAS  Google Scholar 

  71. M. Romedenne, R. Pillai, S. Dryepondt, and B. A. Pint, Oxidation of Metals. 96, 2021 (589).

    Article  CAS  Google Scholar 

  72. E. N’dah, M. P. Hierro, K. Borrero, and F. J. Pérez, Oxidation of Metals. 68, 2007(9).

  73. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals. 75, 2011 (143).

    Article  CAS  Google Scholar 

  74. T. Sanviemvongsak, D. Monceau, and B. Macquaire, Corrosion Science. 141, 2018 (127).

    Article  CAS  Google Scholar 

  75. T. Sanviemvongsak, D. Monceau, C. Desgranges, and B. Macquaire, Corrosion Science. 170, 2020 108684.

    Article  CAS  Google Scholar 

  76. P. M. Mignanelli, N. G. Jones, E. J. Pickering, et al., Scripta Materialia . 136, 2017 (136).

    Article  CAS  Google Scholar 

  77. P. M. Mignanelli, N. G. Jones, M. C. Hardy, and H. J. Stone, On the Effect of Alloying Additions to the Ni-Cr-Al-Nb Dual-Superlattice Gamma-Gamma Prime-Gamma Double Prime Superalloys. In Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications. 2018 (679). https://doi.org/10.1007/978-3-319-89480-5_45.

  78. J. W. Park, and C. J. Altstetter, Metallurgical Transactions A 1987 18:1. 18, 1987 (43).

  79. R. Malacarne, S. Mathieu, L. Aranda, M. Vilasi, C. Desgranges, and S. Knittel, Corrosion Science. 188, 2021 109500.

    Article  CAS  Google Scholar 

  80. C. T. Sims, High Temperature Technology. 2, 1984 (185).

    Article  CAS  Google Scholar 

  81. B. D. Cullity, and S. R. Stock, Determination of Crystal Structure. In: Elements of X-Ray Diffraction. 2001:315–318.

  82. J. M. Oblak, D. F. Paulonis, and D. S. Duvall, Metallurgical Transactions. 5, 1974 (143).

    Article  CAS  Google Scholar 

  83. P. M. Mignanelli, N. G. Jones, M. C. Hardy, and H. J. Stone, Materials Science and Engineering: A. 612, 2014 (179).

    Article  CAS  Google Scholar 

  84. P. M. Mignanelli, N. G. Jones, M. C. Hardy, and H. J. Stone, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 49A, 2018 (699).

    Article  Google Scholar 

  85. A. Oradei-Basile, and J. F. Radavich, A Current T-T-T Diagram for Wrought Alloy 718. In Superalloys 718, 625 and Various Derivatives (1991). TMS; 1991.325–335. https://doi.org/10.7449/1991/Superalloys_1991_325_335.

  86. C. A. Barrett and C. E. Lowell, Oxidation of Metals. 11, 1977 (199).

    Article  CAS  Google Scholar 

  87. K. A. Unocic, and B. A. Pint, Effect of Environment on the High Temperature Oxidation Behavior of 718 and 718Plus. In 7th International Symposium on Superalloy 718 and Derivatives. 2010:667. https://doi.org/10.1002/9781119016854.ch52.

  88. B. A. Pint, S. Dryepondt, and K. A. Unocic, Oxidation of Superalloys in Extreme Environments. In 7th International Symposium on Superalloy 718 and Derivatives. 2010:859. https://doi.org/10.1002/9781118495223.ch66.

  89. S. Lech, A. Kruk, A. Gil, G. Cempura, A. Agüero, and A. Czyrska-Filemonowicz, Scripta Materialia. 167, 2019 (16).

    Article  CAS  Google Scholar 

  90. S. Cruchley, M. P. Taylor, H. E. Evans, M. C. Hardy, and D. J. Child, Materials Science and Technology. 30, 2014 (1884).

    Article  CAS  Google Scholar 

  91. S. Cruchley, M. P. Taylor, H. E. Evans, P. Bowen, M. C. Hardy, and S. Stekovic, Superalloys.. 2012 (751). https://doi.org/10.1002/9781118516430.ch83.

  92. J. H. Chen, P. M. Rogers, and J. A. Little, Oxidation of Metals. 47, 1997 (381).

    Article  CAS  Google Scholar 

  93. S. Pedrazzini, B. S. Rowlands, A. Turk, et al., Metallurgical and Materials Transactions A. 50, 2019 (3024).

    Article  CAS  Google Scholar 

  94. D. J. Young, M. L. Burg, and P. R. Munroe, Materials Science Forum. 461–464, 2004 (21).

    Article  Google Scholar 

  95. D. J. Young, Enabling Theory. In: High Temperature Oxidation and Corrosion of Metals (Elsevier, Amsterdam, 2016), pp. 31–84. https://doi.org/10.1016/B978-0-08-100101-1.00002-9.

  96. K. Hauffe, Oxydation von Metallen and Metallegierungen (Springer, Berlin) 1957.

  97. A. Holt, Kofstad Per. Solid State Ion. 117, 1999 (21).

    Article  CAS  Google Scholar 

  98. A. Atkinson, M. R. Levy, S. Roche, and R. A. Rudkin, Solid State Ion. 177, 2006 (1767).

    Article  CAS  Google Scholar 

  99. H. S. Kitaguchi, M. P. Moody, H. Y. Li, H. E. Evans, M. C. Hardy, and S. Lozano-Perez, Scripta Materialia. 97, 2015 (41).

    Article  CAS  Google Scholar 

  100. M. T. Lapington, D. J. Crudden, R. C. Reed, M. P. Moody, and P. A. J. Bagot, Acta Materialia. 206, 2021 116626.

    Article  CAS  Google Scholar 

  101. G. J. Wise, P. M. Mignanelli, M. C. Hardy, N. L. Church, N. G. Jones, and H. J. Stone, Research Data Supporting “Oxidation Behaviour of New Nickel-Base Superalloys with Varying Aluminium : Niobium Ratio.” https://doi.org/10.17863/CAM.86804.

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of Dr H.T. Pang in performing the experiments and Prof D. Dye for the provision of the alloy samples. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Funding

Funding to support GJW is acknowledged from the EPSRC (through the provision of an iCase studentship) and from Rolls-Royce plc.

Author information

Authors and Affiliations

Authors

Contributions

HJS conceptualised the study and devised the methodology with GJW. Formal analysis, carrying out the investigation, visualisation of the results and preparation of the original draft were performed by GJW. Review and editing was performed by HJS, GJW, NGJ and NLC. Resources and funding to support the study was secured and provided by HJS and MCH. Project supervision was carried out by HJS, MCH and PMM.

Corresponding author

Correspondence to Howard J. Stone.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4965 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wise, G.J., Mignanelli, P.M., Hardy, M.C. et al. Oxidation Behaviour of New Nickel-Base Superalloys with Varying Aluminium: Niobium Ratio. High Temperature Corrosion of mater. 99, 241–266 (2023). https://doi.org/10.1007/s11085-023-10146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10146-6

Keywords

Navigation