Skip to main content
Log in

High-Temperature Corrosion Behavior of T92, TP347HFG and IN625 with Surface Scratching in Carbon Dioxide at 600 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion behavior of T92, TP347HFG and IN625 in high-temperature CO2 at 600 ℃ was investigated. Chromia-forming alloys TP347HFG and IN625 had better corrosion resistance than T92 because of insufficient Cr in T92 for forming Cr-rich oxide scales. More severe internal oxidation of T92 was found underneath the scratch due to the destroy of the Cr-rich oxide layer and the existence of Cr-depletion zone and induced plastic deformation by scratching. With the formation and growth of oxides at the surface of the scratch, the spallation of oxide scales may be caused by the compressive stress causing by scratching. Corrosion thermodynamic calculations were used to reveal the corrosion mechanism of T92, and the Cr–C–O phase diagrams were used to clarify the distribution of carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

All the data discussed are directly presented in the paper, and therefore, they are automatically accessible.

References

  1. E.I. Yantovskii, G. Wall, L. Lindquist. Energy Conversion and Management, 34 213 (1993).

  2. G. Angelino. Eng Gas Turbines Power, 90 287 (1968)

  3. M. Li, H. Zhu, J. Guo, K. Wang, W. Tao. Applied Thermal Engineering, 126 255 (2017).

  4. B.J.P. Buhre, L.K. Elliott, C.D. Sheng, RP Gupta, T.F. Wall. Progress in Energy and Combustion Science, 31 283 (2005).

  5. F. Rouillard, T. Furukawa. Corrosion of 9-12Cr ferritic–martensitic steels in high-temperature CO2, Corrosion Science, 105 120 (2016)

  6. T. Furukawa, F. Rouillard. Progress in Nuclear Energy, 82 136 (2015).

  7. F. Rouillard, G. Moine, L. Martinelli, J.C. Ruiz. Oxidation of Metals, 77, 27 (2012).

  8. F. Rouillard, F. Charton, G. Moine. Corrosion 67, 2011 (2011).

  9. B.A. Pint, J. Lehmusto, M.J. Lance, J.R. Keiser. Materials and Corrosion, 70, 1400 (2019).

  10. V.P. Deodeshmukh, B.A. Pint. Long-term performance of high temperature alloys in oxidizing environments and supercritical CO2, 953 (2019).

  11. R.P. Oleksak, J.H. Tylczak, C.S. Carney, G.R. Holcomb, O.N. Dogan. Jom, 70, 1527 (2018)

  12. B.A. Pint, R.G. Brese, J.R. Keiser. Materials and Corrosion, 68, 151 (2017).

  13. G.R. Holcomb, C. Carney, ÖN Doğan. Corrosion Science, 109, 22 (2016).

  14. B. Adam, L. Teeter, J. Mahaffey, M. Anderson, L. Arnadottir, J.D. 90, 453 (2018).

  15. J. Mahaffey, D. Adam, A. Brittan, M. Anderson, K. Sridharan. Oxidation of Metals, 86, 567 (2016).

  16. V. Firouzdor, G.P. Cao, K. Sridharan, M. Anderson, T.R. Allen. Materials and Corrosion, 66, 137 (2015).

  17. L. He, P. Roman, B. Leng, K. Sridharan, M. Anderson, T.R. Allen. Corrosion Science, 82, 67 (2014).

  18. V. Firouzdor, K. Sridharan, G. Cao, M. Anderson, T.R. Allen. Corrosion Science, 69 281 (2013).

  19. G. Cao, V. Firouzdor, K. Sridharan, M. Anderson, T.R. Allen. Corrosion Science, 60 246 (2012).

  20. L. Tan, M. Anderson, D. Taylor, T.R. Allen. Corrosion Science, 53, 3273.

  21. S.H. Kim, J.H. Cha, C. Jang. Corrosion Science, 174 (2020).

  22. C. Kim, S.H. Kim, J.H. Cha, C. Jang, T.K. Kim. Surface and Coatings Technology, 374 666 (2019).

  23. H. Chen, S.H. Kim, C. Kim, J. Chen, C. Jang. Corrosion Science, 156, 16 (2019)

  24. S.H. Kim, G.O. Subramanian, C. Kim, C. Jang, K.M. Park. Surface and Coatings Technology, 349 415 (2018).

  25. H. Chen, S.H. Kim, C. Long, C. Kim, C. Progress in Natural Science: Materials International, 28 731 (2018).

  26. G.O. Subramanian, H.J. Lee, S.H. Kim, C. Jang. Oxidation of Metals, 89 683 (2017).

  27. H.J. Lee, G.O. Subramanian, S.H. Kim, C. Jang. Corrosion Science, 111, 649 (2016).

  28. H.J. Lee, S.H. Kim, H. Kim, C. Jang. Applied Surface Science, 388 483 (2016).

  29. H.J. Lee, H. Kim, S.H. Kim, C. Jang. Corrosion Science, 99 227 (2015).

  30. J. Wang, F. Huang, E. Han, F. Meng. Corrosion, 69 893 (2013).

  31. F. Meng, J. Wang, E. Han,W. ke. Journal of Chinese Society for Corrosion and Protection, 33 413 (2013).

  32. F. Meng, E. Han, J. Wang, Z. Zhang, W. Ke. Electrochimica Acta, 56 1781 (2011).

  33. F. Meng, J. Wang, E. Han, W. Ke. Corrosion Science, 51 2761 (2009).

  34. Z. Liang, Y. Gui, Y. Wang, Q. Zhao. Energy, 175 345 (2019).

  35. Y. Gui, Z. Liang, M. Yu, Q. Zhao. Materials Science Forum, 944 398 (2019).

  36. Y. Gui, Z. Liang, H. Shao, Q. Zhao. Corrosion Science, 175 108810 (2020).

  37. K. Li, Y. Zeng, J. Luo. Materials and Corrosion, 72, 757 (2020).

  38. A. Brittan, J. Mahaffey, M. Anderson. Metallurgical and Materials Transactions A 51 2564 (2020).

  39. T. Furukawa, Y. Inagaki, M. Aritomi. Progress in Nuclear Energy, 53 1050 (2011).

  40. R.I. Olivares, D.J. Young, P. Marvig, W. Strein., Oxidation of Metals 84 585 (2015).

  41. T.D. Nguyen, J. Zhang, D.J. Young. Corrosion Science, 170 (2020).

  42. S.H. Kim, C. Kim, J.H. Cha, C. Jang. Coatings, 10 (2020).

  43. Z. Dong, M. Li, Y. Behnamian. Corrosion Science, 166 (2020).

  44. Y. Xu, J. Lu, W. Li, Z. Yang, Y. Gu. Corrosion -Houston Tx, 76 941 (2020).

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51806166) and China Postdoctoral Science Foundation (2020M683474, BX20190269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Liang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Wang, M., Liang, Z. et al. High-Temperature Corrosion Behavior of T92, TP347HFG and IN625 with Surface Scratching in Carbon Dioxide at 600 °C. Oxid Met 97, 97–121 (2022). https://doi.org/10.1007/s11085-021-10078-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10078-z

Keywords

Navigation