Skip to main content
Log in

In Situ Observation of Reaction Fronts During the Initial Stages of Iron Surface Oxidation at 1150 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This study focuses on the initial stages of iron surface oxidation, studied by confocal scanning laser microscopy. Pure iron cubes were prepared and polished for in situ observation. Samples were oxidized for 2–60 s by dry air at 1150 °C. A dynamic oxidation process was observed, with two reaction fronts that moved from the sample edge to the center at around 20–30- and around 40–50-s oxidation, respectively. Scanning electron microscopy (SEM) was used to characterize the iron oxide surface morphology. Pyramidal features appeared first on the surface, and then the surface became flatter with time. X-ray diffraction was used to characterize the phases of the outermost oxide layer. Overall, the content of wüstite decreased and hematite content increased with oxidation time. SEM with a backscattered electron detector was used to measure the oxide layer thicknesses, and it was found that the oxide thickness increased parabolically with time. The different oxide layers within the scale were identified by an optical microscope with a polarized light source. Even after 2-s oxidation, an obvious magnetite layer was found on the wüstite layer, and after 10-s oxidation, an obvious hematite layer was observed on the magnetite layer. A thicker hematite layer was observed at the sample edge. The reasons for the morphology changes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Global 2018 crude steel production data, World Steel Association AISBL, Brussels, Belgium (2018).

  2. J. P. Durling and T. J. Prusa, European Journal of Political Economy22, 2006 (675).

    Google Scholar 

  3. Steel statistical yearbook 2018, World Steel Association AISBL, Brussels, Belgium (2018).

  4. O. Elkoca and K. Davut, Microscopy and Microanalysis21, 2015 (2269).

    Google Scholar 

  5. W. Sun, A. K. Tieu, Z. Jiang and C. Lu, Journal of Materials Processing Technology155, 2004 (1307).

    Google Scholar 

  6. M. M. Wolf, Iron Steelmaker27, 2000 (114).

    CAS  Google Scholar 

  7. P. A. Munther and J. G. Lenard, Journal of Materials Processing Technology88, 1999 (105).

    Google Scholar 

  8. V. V. Basasbe and J. A. Szpunar, ISIJ International44, 2004 (1554).

    Google Scholar 

  9. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals59, 2003 (433).

    CAS  Google Scholar 

  10. M. M. Wolf, Iron Steelmaker27, 2000 (63).

    CAS  Google Scholar 

  11. H. Okada, T. Fukagawa, H. Ishihara, A. Okamoto, M. Azuma and Y. Matsuda, ISIJ International35, 1995 (886).

    Google Scholar 

  12. H. Okada, T. Fukagawa, H. Ishihara, A. Okamoto, M. Azuma and Y. Matsuda, Tetsu-to-Hagané80, 1994 (849).

    CAS  Google Scholar 

  13. T. Fukagawa, H. Okada and Y. Maehara, Tetsu-to-Hagané81, 1995 (559).

    CAS  Google Scholar 

  14. T. Fukagawa, H. Okada, Y. Maehara and H. Fujikawa, Tetsu-to-Hagané82, 1996 (63).

    CAS  Google Scholar 

  15. W. M. Melfo and R. J. Dippenaar, Journal of Microscopy225, 2007 (147).

    CAS  Google Scholar 

  16. W. M. Melfo, R. J. Dippenaar and C. D. Carter, Iron Steel Technology3, 2006 (54).

    Google Scholar 

  17. C. Devadas, I. V. Samarasekera and E. B. Hawbolt, Metallurgical Transactions A22, 1991 (335).

    Google Scholar 

  18. I. Kvernes, M. Oliveira and P. Kofstad, Corrosion Science17, 1977 (237).

    CAS  Google Scholar 

  19. J. Païdassi, Revue de Métallurgie56, 1957 (569).

    Google Scholar 

  20. H. A. Wriedt, Journal of Phase Equilibria and Diffusion12, 1991 (170).

    CAS  Google Scholar 

  21. R. Y. Chen and W. Y. D. Yuen, ISIJ International45, 2005 (52).

    CAS  Google Scholar 

  22. J. Shen, L. Zhou and T. Li, Oxidation of Metals48, 1997 (347).

    Google Scholar 

  23. N. Babu, R. Balasubramaniam and A. Ghosh, Corrosion Science43, 2001 (2239).

    CAS  Google Scholar 

  24. F. Gesmundo and F. Viani, Journal of The Electrochemical Society128, 1981 (460).

    CAS  Google Scholar 

  25. L. Himmel, R. F. Mehl and C. E. Birchenall, Transaction AIME197, 1953 (827).

    Google Scholar 

  26. A. G. Goursat and W. W. Smeltzer, Journal of The Electrochemical Society120, 1973 (390).

    CAS  Google Scholar 

  27. M. H. Davies, M. T. Simnad and C. E. Birchenall, Transaction AIME191, 1951 (889).

    Google Scholar 

  28. N. G. Schmall, H. Baumann and H. Schenck, Archiv für das Eisenhüttenwesen29, 1958 (83).

    Google Scholar 

  29. W. W. Smeltzer and D. J. Young, Progress in Solid State Chemistry10, 1975 (17).

    Google Scholar 

  30. W. W. Smeltzer, Acta Metallurgica8, 1960 (377).

    CAS  Google Scholar 

  31. P. Kofstad and A. Z. Hed, Journal of The Electrochemical Society115, 1968 (102).

    CAS  Google Scholar 

  32. E. Brauns, A. Rahmel and H. Christmann, Archiv für das Eisenhüttenwesen30, 1959 (553).

    CAS  Google Scholar 

  33. R. J. Hussey, G. I. Sproule, D. Caplan and M. J. Graham, Oxidation of Metals11, 1977 (65).

    CAS  Google Scholar 

  34. A. G. Goursat and W. W. Smeltzer, Oxidation of Metals6, 1973 (101).

    CAS  Google Scholar 

  35. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals53, 2000 (539).

    CAS  Google Scholar 

  36. R. C. Logani and W. W. Smeltzer, Canadian Metallurgical Quarterly10, 1971 (149).

    CAS  Google Scholar 

  37. C. Wagner, Zeitschrift für Physikalische Chemie21, 1933 (25).

    Google Scholar 

  38. L. E. Samuels, Light Microscopy of Carbon Steels, (ASM International, Ohio, 1999).

    Google Scholar 

  39. D. Caplan and M. Cohen, Corrosion Science6, 1996 (321).

    Google Scholar 

  40. J. Chipman, Metallurgical and Materials Transactions B3, 1972 (55).

    CAS  Google Scholar 

  41. D. J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed, (Elsevier, Amsterdam, 2016).

    Google Scholar 

  42. L. B. Pfeil, The Journal of the Iron and Steel Institute123, 1931 (237).

    Google Scholar 

  43. J. Bénard and O. Coquelle, Comptes Rendus de l’Académie des sciences222, 1946 (796).

    Google Scholar 

  44. N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, (Edward Arnold, London, 1983).

    Google Scholar 

  45. G. Garnaud and R. A. Rapp, Oxidation of Metals11, 1977 (193).

    CAS  Google Scholar 

  46. S. Y. Cheng, C. T. Juan, S. L. Kuan and W. T. Tsai, Oxidation of Metals60, 2003 (409).

    CAS  Google Scholar 

  47. M. Zhang and G. Shao, Materials Science and Engineering A452, 2007 (189).

    Google Scholar 

  48. S. Geng, J. Sun and L. Guo, Materials and Design88, 2015 (1).

    CAS  Google Scholar 

  49. M. Takeda, H. Kushida, T. Onishi, M. Toyama, F. Koizumi and S. Fujimoto, Oxidation of Metals73, 2010 (1).

    CAS  Google Scholar 

  50. H. Tanei and Y. Kondo, ISIJ International52, 2012 (105).

    CAS  Google Scholar 

  51. Y. L. Yang, C. H. Yang, S. N. Lin, C. H. Chen and W. T. Tsai, Materials Chemistry and Physics112, 2008 (566).

    CAS  Google Scholar 

  52. T. Matsuhashi, H. Okada and S. Kiya, Tetsu-to-Hagané90, 2004 (487).

    CAS  Google Scholar 

  53. T. L. Jungling and R. A. Rapp, Metallurgical Transactions A15, 1984 (2231).

    Google Scholar 

  54. L. E. Matson, H. Erhart, M. Lee and R. A. Rapp, Metallurgical Transactions A15, 1984 (2241).

    Google Scholar 

  55. M. Lee and R. A. Rapp, Oxidation of Metals27, 1987 (187).

    CAS  Google Scholar 

  56. B. Schmid, N. Aas, Ø. Grong and R. Ødegård, Oxidation of Metals57, 2002 (115).

    CAS  Google Scholar 

  57. W. W. Mullins, Journal of Applied Physics28, 1957 (333).

    CAS  Google Scholar 

  58. H. Yin, T. Emi and H. Shibata, ISIJ International38, 1998 (794).

    CAS  Google Scholar 

  59. H. Yin, T. Emi and H. Shibata, Acta Metallurgica47, 1999 (1523).

    CAS  Google Scholar 

  60. E. Schmidt, Y. Wang and S. Sridhar, Metallurgical and Materials Transactions A37, 2006 (1799).

    Google Scholar 

  61. M. E. Fleet, Acta Crystallographica B37, 1981 (917).

    Google Scholar 

  62. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd, Completely Revised and Extended Edition, (Wiley, New York, 2006).

    Google Scholar 

  63. J. S. Sheasby, W. E. Boggs and E. T. Turkdogan, Metal Science18, 1984 (127).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the industrial members of the Center for Iron and Steelmaking Research at Carnegie Mellon University as well as the use of the Materials Characterization Facility at Carnegie Mellon University under Grant # MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., He, Y., Milligan, E.A. et al. In Situ Observation of Reaction Fronts During the Initial Stages of Iron Surface Oxidation at 1150 °C. Oxid Met 93, 449–463 (2020). https://doi.org/10.1007/s11085-020-09965-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09965-8

Keywords

Navigation