Skip to main content
Log in

Microstructural Investigation of the Thermally Grown Oxide on Grain-Refined Overdoped NiAl–Zr

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The thermally grown oxide on sputter-deposited NiAl–0.09Zr was studied using transmission electron microscopy (TEM) and transmission Kikuchi diffraction (TKD) to microstructurally assess its oxidation resistance. Sputter deposition resulted in a refined grain size of 0.3 μm that was compared to extruded NiAl–Zr with a grain size of approximately 25 μm. Thermogravimetric oxidation of the sputter-deposited material showed a shorter transient regime with lower mass gain than an extruded NiAl–0.1Zr alloy and improved spallation resistance through 50 h of isothermal oxidation at 1000 °C. After 5 h the thermally grown oxide on the sputter-deposited alloy exhibited a three-layer structure consisting of external θ-Al2O3 whiskers, intermediate equiaxed α-Al2O3 grains (< 100 nm) + ZrO2 precipitates and internal columnar α-Al2O3 grains, in contrast to the extruded alloy which showed sparse α growth. After 50 h of oxidation, the three-layer structure was retained, but the top θ-Al2O3 layer was transformed to α-Al2O3. TKD after 50 h showed the top and bottom oxide layers to be composed of high-misorientation α-Al2O3 grains approximately three times smaller than the extruded sample. Monoclinic and tetragonal ZrO2 precipitates were identified in the fine-grained middle region. These features show that grain refinement significantly increases Zr diffusion to the reacting surface, while simultaneously mitigating the effects of overdoping. This increased Zr diffusion is believed to have expedited the formation of a continuous α-Al2O3 layer, resulting in a shorter transient oxidation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Wang, M. Chen, L. Yang, S. Zhu and F. Wang, Corrosion Science 98, 2015 (530).

    Article  CAS  Google Scholar 

  2. F. Wang, Oxidation of Metals 48, 1997 (215).

    Article  CAS  Google Scholar 

  3. S. L. Yang, F. H. Wang, Y. Niu and W. T. Wu, Materials Science Forum 369–372, 2001 (361).

    Article  Google Scholar 

  4. Z. Liu, W. Gao, K. Dahm and F. Wang, Acta Metallurgica 46, 1998 (1691).

    CAS  Google Scholar 

  5. J. Zhang, X. Peng, D. J. Young and F. Wang, Surface and Coatings Technology 217, 2013 (162).

    Article  CAS  Google Scholar 

  6. C. S. Giggins and F. S. Pettit, Transactions of the Metallurgical Society of AIME 245, 1969 (2495).

    CAS  Google Scholar 

  7. C. S. Giggins and F. S. Pettit, Transactions of the Metallurgical Society of AIME 245, 1969 (2509).

    CAS  Google Scholar 

  8. J. G. Goedjen and D. A. Shores, Oxidation of Metals 37, 1992 (125).

    Article  CAS  Google Scholar 

  9. M. Maloney, Rapid Solidification Processing and Oxidation of Fine Grained FeCrAl Alloys (Ph.D. Dissertation, Massachusetts Institute of Technology, Boston, 1989).

  10. K. R. Lawless, Reports on Progress in Physics 37, 1974 (231).

    Article  CAS  Google Scholar 

  11. J. Stringer, B. A. Wilcox and R. I. Jaffee, Oxidation of Metals 5, 1972 (11).

    Article  CAS  Google Scholar 

  12. M. D. Merz, Metallurgical Transactions A 10, 1979 (71).

    Article  Google Scholar 

  13. P. Kofstad, Oxidation of Metals 44, 1995 (3).

    Article  CAS  Google Scholar 

  14. F. Wang, H. Lou, S. Zhu and W. Wu, Oxidation of Metals 45, 1996 (39).

    Article  CAS  Google Scholar 

  15. M. Schutze, Protective Oxide Scales and Their Breakdown, (Wiley, New York, 1997).

    Google Scholar 

  16. T. G. Langdon, Metals Forum 1, 1978 (59).

    CAS  Google Scholar 

  17. S. Hou, S. Zhu, T. Zhang and F. Wang, Applied Surface Science 324, 2015 (1).

    Article  CAS  Google Scholar 

  18. S. Yang, F. Wang, Z. Sun and S. Zhu, Intermetallics 10, 2002 (467).

    Article  CAS  Google Scholar 

  19. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 1989 (275).

    Article  CAS  Google Scholar 

  20. J. Doychak, “The Evolution and Growth of Al 2 O 3 Scales on β-NiAl,” NASA Contractor Report 175097, (Case Western Reserve University, Cleveland, 1986).

    Google Scholar 

  21. C. A. Barrett, Oxidation of Metals 30, 1988 (361).

    Article  CAS  Google Scholar 

  22. V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 20, 2003 (261).

    Article  CAS  Google Scholar 

  23. B. A. Pint, Electrochemical Society Proceedings 96–26, 1997 (74).

    Google Scholar 

  24. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prubner and K. B. Alexander, Materials Science & Engineering A 245, 1998 (201).

    Article  Google Scholar 

  25. T. Boll, K. A. Unocic, B. A. Pint, A. Martensson and K. Stiller, Oxidation of Metals 88, 2017 (469).

    Article  CAS  Google Scholar 

  26. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1992 (1677).

    Article  CAS  Google Scholar 

  27. V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 2000 (59).

    Article  CAS  Google Scholar 

  28. F. J. Humphreys, Scripta Materialia 51, 2004 (771).

    Article  CAS  Google Scholar 

  29. R. R. Keller and R. H. Geiss, Journal of Microscopy 245, 2011 (245).

    Article  Google Scholar 

  30. P. W. Trimby, Ultramicroscopy 120, 2012 (16).

    Article  CAS  Google Scholar 

  31. P. W. Trimby, Y. Cao, Z. Chen, S. Han, K. J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J. T. Wang, J. Wheeler and J. M. Cairney, Acta Materialia 62, 2014 (69).

    Article  CAS  Google Scholar 

  32. N. Mortazavi, M. Esmaily and M. Halvarsson, Materials Letters 147, 2015 (42).

    Article  CAS  Google Scholar 

  33. A. Garner, A. Gholinia, P. Frankel, M. Gass, I. MacLaren and M. Preuss, Acta Materialia 80, 2014 (159).

    Article  CAS  Google Scholar 

  34. M. Abbasi, D. Kim, H. Guim, M. Hosseini, H. Danesh-Manesh and M. Abbasi, ACS Nano 9, 2015 (10991).

    Article  CAS  Google Scholar 

  35. A. La Fontaine, H.-W. Yen, P. Trimby, S. Moody, S. Miller, M. Chensee, S. Ringer and J. Cairney, Corrosion Science 85, 2014 (1).

    Article  Google Scholar 

  36. M. Karadge, X. Zhao, M. Preuss and P. Xiao, Scripta Materialia 54, 2006 (639).

    Article  CAS  Google Scholar 

  37. J. Doychak and M. Ruhle, Oxidation of Metals 31, 1989 (431).

    Article  CAS  Google Scholar 

  38. P. Y. Hou, A. P. Paulikas and B. W. Veal, Materials at High Temperatures 22, 2014 (535).

    Article  Google Scholar 

  39. J. A. Thornton, Journal of Vacuum Science and Technology 11, 1974 (666).

    Article  CAS  Google Scholar 

  40. C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods 9, 2012 (671).

    Article  CAS  Google Scholar 

  41. J. C. Yang, E. Schumann, I. Levin and M. Ruhle, Acta Materialia 46, 1998 (2195).

    Article  CAS  Google Scholar 

  42. H. Svensson, P. Knutsson and K. Stiller, Oxidation of Metals 71, 2009 (143).

    Article  CAS  Google Scholar 

  43. K. A. Unocic, Y. Chen, D. Shin, B. A. Pint and E. A. Marquis, Micron 109, 2018 (41).

    Article  CAS  Google Scholar 

  44. B. A. Pint, J. R. Martin and L. W. Hobbs, Oxidation of Metals 39, 1993 (167).

    Article  CAS  Google Scholar 

  45. J. K. Doychak, The Evolution and Growth of Al 2 O 3 Scales on β-NiAl (Ph.D. Dissertation, Case Western Reserve University, Cleveland, 1986).

  46. D. Zimmerman, V. K. Tolpygo, M. Ruhle and D. R. Clarke, Zeitschrift fur Metallkunde 94, 2003 (157).

    Article  CAS  Google Scholar 

  47. J. Stringer and I. G. Wright, Oxidation of Metals 5, 1972 (59).

    Article  CAS  Google Scholar 

  48. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 1982 (245).

    Article  CAS  Google Scholar 

  49. A. G. Evans and J. W. Hutchinson, Acta Metallurgica 37, 1989 (909).

    Article  CAS  Google Scholar 

  50. J. B. Wachtman, W. R. Cannon and M. J. Matthewson, Mechanical Properties of Ceramics, (Wiley, New York, 2009).

    Book  Google Scholar 

  51. J. Pelleg, Creep in Ceramics, (Springer, New York, 2017).

    Book  Google Scholar 

  52. J. Karch, R. Birringer and H. Gleiter, Nature 330, 1987 (556).

    Article  CAS  Google Scholar 

  53. D. R. Clarke, Acta Materialia 51, 2003 (1393).

    Article  CAS  Google Scholar 

  54. J. Angenete, K. Stiller and V. Langer, Oxidation of Metals 60, 2003 (47).

    Article  CAS  Google Scholar 

  55. J. A. Nychka and D. R. Clarke, Oxidation of Metals 63, 2005 (325).

    Article  CAS  Google Scholar 

  56. F. N. Rhines and J. S. Wolf, Metallurgical Transactions 1, 1970 (1701).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge partial support from the National Science Foundation under Grant DMR-1411280. This work utilized equipment owned by the Central Analytical Facility (CAF), which is housed at the University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Weaver.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, R., Weaver, M. Microstructural Investigation of the Thermally Grown Oxide on Grain-Refined Overdoped NiAl–Zr. Oxid Met 92, 227–242 (2019). https://doi.org/10.1007/s11085-019-09920-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09920-2

Keywords

Navigation