Skip to main content
Log in

Corrosion Properties and Mechanisms of Austenitic Stainless Steels and Ni-Base Alloys in Supercritical Water Containing Phosphate, Sulfate, Chloride and Oxygen

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion behaviors of 316 stainless steel (SS), 316L SS, Inconel 625, Incoloy 825 and Hastelloy C276 were studied in supercritical water (SCW) containing phosphate, sulfate, chloride and/or oxygen. The results show that the alloy corrosion rate in SCW containing oxygen and phosphate was increased by adding sulfate and/or chloride. A two-layer structure of oxide film on 316 SS consisted of an inner layer with Cr-rich oxides (i.e., Cr2O3) and an outer layer rich in phosphates (e.g., FePO4 and Ni3(PO4)2). A three-layer oxide film formed on Incoloy 825 including corrosion products Fe2O3, NiO, FePO4, Ni3(PO4)2 and NiCr2O4, with phosphates in each layer. A two-layer oxide film on Hastelloy C276 was composed of metal oxides in the inner layer and metal oxides as well as phosphates in the outer layer, including Fe2O3, Cr2O3, NiO, MoO2, FePO4, CrPO4, Ni3(PO4)2 and NiCr2O4. The existence of sulfate, chloride, and especially both of them destroyed the formation of water-insoluble phosphates on the oxide film of tested alloy in SCW containing oxygen and phosphate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Gidner, L. Stenmark, Blood 108, 430 (2001).

    Google Scholar 

  2. P. Kritzer and E. Dinjus, Chemical Engineering Journal 83, 207 (2001).

    Article  CAS  Google Scholar 

  3. E. Fauvel, C. Joussotdubien, V. Tanneur, S. Moussiere, P. Guichardon, G. Charbit and F. Charbit, Industrial and Engineering Chemistry Research 44, 8968 (2005).

    Article  CAS  Google Scholar 

  4. E. Asselin, A. Alfantazi and S. Rogak, Corrosion Science 52, 118 (2010).

    Article  CAS  Google Scholar 

  5. X. Y. Tang, S. Z. Wang, L. L. Qian, M. M. Ren, Y. H. Li and J. Q. Yang, Journal of Advanced Oxidation Technologies 19, 141 (2016).

    Article  CAS  Google Scholar 

  6. P. A. Marrone and G. T. Hong, Journal of Supercritical Fluids 51, 83 (2009).

    Article  CAS  Google Scholar 

  7. R. Fujisawa, K. Nishimura, M. Sakaihara, Y. Kurata and Y. Watanabe, Corrosion 3, 7 (2005).

    Google Scholar 

  8. X. Y. Tang, S. Z. Wang, D. H. Xu, Y. M. Gong, J. Zhang and Y. Z. Wang, Industrial and Engineering Chemistry Research 52, 18241 (2013).

    Article  CAS  Google Scholar 

  9. X. Y. Tang, S. Z. Wang, L. L. Qian, Y. H. Li, D. H. Xu and Y. P. Zhang, Chemical Engineering Research and Design 100, 530 (2015).

    Article  CAS  Google Scholar 

  10. Y. H. Li, S. Z. Wang, X. Y. Tang, D. H. Xu, Y. Guo and L. L. Qian, Oxidation of Metals 84, 509 (2015).

    Article  CAS  Google Scholar 

  11. P. Kritzer, N. Boukis and E. Dinjus, Materials and Corrosion 49, 831 (1998).

    Article  CAS  Google Scholar 

  12. M. Wagner, V. Kolarik, B. Michelfelder, et al., Materials and Corrosion 50, 523 (1999).

    Article  CAS  Google Scholar 

  13. V. Kolarik, B. Michelfelder and M. Wagner, Eighteenth-Century Life 23, 30 (1999).

    Google Scholar 

  14. L. Tan, X. Ren, K. Sridharan and T. Allen, Corrosion Science 50, 3056 (2008).

    Article  CAS  Google Scholar 

  15. M. C. Sun, X. Q. Wu, Z. E. Zhang and E. H. Han, Journal of Supercritical Fluids 47, 309 (2008).

    Article  CAS  Google Scholar 

  16. P. Kritzer, Journal of Supercritical Fluids 29, 1 (2004).

    Article  CAS  Google Scholar 

  17. S. Q. Huang, Z. M. Shen, N. W. Zhu, W. L. Jiang and H. Y. Zhou, Materials for Mechanical Engineering 38, 48 (2014).

    CAS  Google Scholar 

  18. Q. Zhang, R. Tang, K. J. Yin, X. Luo and L. F. Zhang, Corrosion Science 51, 2092 (2009).

    Article  CAS  Google Scholar 

  19. D. B. Mitton, N. Eliaz, J. A. Cline and R. M. Latanision, Materials and Processing Report 16, 30 (2001).

    Google Scholar 

  20. P. Qiu, Z. S. Chen, H. F. Yang, L. J. Yang, Y. Song and L. J. Lv, Sciencepaper Online 10, 6 (2017).

    Google Scholar 

  21. J. E. Maslar, W. S. Hurst, J. H. Hendricks, M. I. Aquino and W. J. Bowers Jr., Corrosion 58, 225 (2002).

    Article  CAS  Google Scholar 

  22. Y. Daigo, K. Sugahara, T. Isobe and Y. Watanabe, Corrosion 62, 174 (2006).

    Article  CAS  Google Scholar 

  23. J. Guo, Z. Geng, J. Dong and M. Zhang, Rare Metal Materials and Engineering 41, 1929 (2012).

    CAS  Google Scholar 

  24. T. Adschiri, Y. Watanabe, K. Sue and K. Arai, Medicina Clínica 107, 702 (2001).

    Google Scholar 

  25. X. Gao, X. Q. Wu, Z. E. Zhang, H. Guan and E. H. Han, Journal of Supercritical Fluids 42, 157 (2007).

    Article  CAS  Google Scholar 

  26. M. Sun, X. Wu, Z. Zhang and E. H. Han, Corrosion Science 51, 1069 (2009).

    Article  CAS  Google Scholar 

  27. S. H. Son and J. H. Lee, Journal of Supercritical Fluids 44, 370 (2008).

    Article  CAS  Google Scholar 

  28. X. Ren, K. Sridharan and T. R. Allen, Corrosion 63, 603 (2007).

    Article  CAS  Google Scholar 

  29. R. Fujisawa, K. Nishimura, M. Sakaihara, Y. Kurata and Y. Watanabe, Corrosion 62, 270 (2012).

    Article  Google Scholar 

  30. S. Penttilä, A. Toivonen, J. Li, W. Zheng and R. Novotny, Journal of Supercritical Fluids 81, 157 (2013).

    Article  Google Scholar 

  31. B. Stellwag, Corrosion Science 40, 337 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Projects from National Natural Science Foundation of China (21576219, 21206132), the Fundamental Research Funds for the Central Universities (xjj2016116), and the National Key Research and Development Program of China (2016YFC0801904, 2017YFB060360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Xu, D., Guo, S. et al. Corrosion Properties and Mechanisms of Austenitic Stainless Steels and Ni-Base Alloys in Supercritical Water Containing Phosphate, Sulfate, Chloride and Oxygen. Oxid Met 90, 599–616 (2018). https://doi.org/10.1007/s11085-018-9855-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9855-4

Keywords

Navigation