Skip to main content
Log in

Analytical Modeling on Stress Assisted Oxidation and its Effect on Creep Response of Metals

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The aim of this paper was to investigate the effect of external mechanical loads on the kinetics and process of high temperature oxidation of metals or alloys through a modeling approach. In this model, the complicated interplay among the external stress, growth strain and creep strain, the oxide stress and thickness was identified. The stress accumulation in the oxide and the variation of scale thickness along with time and the effect of oxidation behavior on the creep properties of underlying metal during oxidation process can be expected. Generally, the external tensile stress would promote the growth rate of oxidation layer. Introducing a small external stress may lead to obvious changes of magnitude and state of stress in oxidation layer. At a given external stress, the creep strain rate was not kept constant due to the oxidation layer growth and stress transfer between oxidation layer and underlying metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. N. Rhines and J. S. Wolf, Metallurgical Transactions A 1, 1970 (1701).

    Article  Google Scholar 

  2. V. K. Tolpygo, J. R. Drygen and D. R. Clarke, Acta Materialia 46, 1998 (927).

    Article  Google Scholar 

  3. V. K. Tolpygo and D. R. Clarke, Oxidation of Metals 49, 1998 (187).

    Article  Google Scholar 

  4. H. E. Evans, International Materials Reviews 40, 1995 (1).

    Article  Google Scholar 

  5. D. L. Douglass, Oxidation of Metals 1, 1969 (127).

    Article  Google Scholar 

  6. D. R. Clarke, Acta Materialia 51, 2003 (1393).

    Article  Google Scholar 

  7. S. Maharjan, X. C. Zhang, F. Z. Xuan, Z. D. Wang and S. T. Tu, Journal of Applied Physics 110, 2011 (063511).

    Article  Google Scholar 

  8. S. Maharjan, X. C. Zhang and Z. D. Wang, Journal of Applied Physics 112, 2012 (033514).

    Article  Google Scholar 

  9. S. Maharjan, X. C. Zhang and Z. D. Wang, Oxidation of Metals 77, 2012 (93).

    Article  Google Scholar 

  10. J. L. Ruan, Y. M. Pei and D. N. Fang, Acta Mechanica 223, 2012 (2597).

    Article  Google Scholar 

  11. J. L. Ruan, Y. M. Pei and D. N. Fang, Corrosion Science 66, 2013 (315).

    Article  Google Scholar 

  12. R. K. Wilson and E. C. Aifantis, Acta Mechanica 45, 1982 (273).

    Article  Google Scholar 

  13. D. J. Unger and E. C. Aifantis, Acta Mechanica 47, 1983 (117).

    Article  Google Scholar 

  14. M. Schütze, Oxidation of Metals 44, 1995 (29).

    Article  Google Scholar 

  15. G. Moulin, P. Arevalo and A. Salleo, Oxidation of Metals 45, 1996 (153).

    Article  Google Scholar 

  16. C. Wagner, Journal of the Electrochemical Society 99, 1952 (369).

    Article  Google Scholar 

  17. A. M. Limarga and D. S. Wilkinson, Acta Materialia 55, 2007 (189).

    Article  Google Scholar 

  18. A. M. Limarga and D. S. Wilkinson, Acta Materialia 55, 2007 (251).

    Article  Google Scholar 

  19. R. W. Neu and H. Sehitoglu, Metallurgical Transactions A 20, 1989 (1755).

    Article  Google Scholar 

  20. R. W. Neu and H. Sehitoglu, Metallurgical Transactions A 20, 1989 (1769).

    Article  Google Scholar 

  21. S. D. Antolovich, S. Liu and R. Baur, Metallurgical and Materials Transactions A 12, 1981 (473).

    Article  Google Scholar 

  22. J. Reuchet and L. Remy, Metallurgical and Materials Transactions A 14, 1983 (141).

    Article  Google Scholar 

  23. Y. Kraftmakher, Physics Reports 299, 1998 (79).

    Article  Google Scholar 

  24. J. C. Li, Metallurgical Transactions A 9, 1978 (1353).

    Article  Google Scholar 

  25. W. Przybilla and M. Schütze, Oxidation of Metals 58, 2002 (103).

    Article  Google Scholar 

  26. J. L. Grosseau-Poussard, B. Panicaud and S. B. Afia, Computation Materials Science 71, 2013 (47).

    Article  Google Scholar 

  27. K. Taneichi, T. Narushima, Y. Iguchi and C. Ouchi, Materials Transactions 47, 2006 (2540).

    Article  Google Scholar 

  28. A. M. Huntz, G. Calvarin-Amiri, H. E. Evans and G. Cailletaud, Oxidation of Metals 57, 2002 (499).

    Article  Google Scholar 

  29. G. Calvarin, A. M. Huntz and R. Molins, Materials at High Temperatures 17, 2000 (257).

    Article  Google Scholar 

  30. E. S. Oh, J. R. Walton, D. C. Lagoudas and J. C. Slattery, Acta Mechanica 181, 2006 (231).

    Article  Google Scholar 

  31. M. A. Kattis, Acta Mechanica 96, 1993 (37–46).

    Article  Google Scholar 

  32. Y. H. Suo and S. P. Shen, Acta Mechanica 223, 2012 (29).

    Article  Google Scholar 

  33. S. L. Hu and S. P. Shen, Acta Mechanica 224, 2013 (2895).

    Article  Google Scholar 

  34. C. R. Hickenboth, J. S. Moore, S. R. White, N. R. Sottos and J. Baudry, Nature 446, 2007 (423).

    Article  Google Scholar 

  35. L. C. Stephen, Nature 487, 2012 (176).

    Article  Google Scholar 

  36. A. Mihalyi, R. J. Jaccodine and T. J. Delph, Applied Physics Letters 74, 1999 (1981).

    Article  Google Scholar 

  37. A. Stesmans, D. Pierreux, R. J. Jaccodine and M. T. Lin, Applied Physics Letters 82, 2003 (3038).

    Article  Google Scholar 

  38. H. E. Evans, D. J. Norfolk and T. Swan, Journal of the Electrochemical Society 125, 1978 (1180).

    Article  Google Scholar 

  39. L. Gaillet, S. Benmedakhne, A. Laksimi and G. Moulin, Journal of Materials Science 38, 2003 (1479).

    Article  Google Scholar 

  40. P. Hancock and J. R. Nicholls, Materials Science and Technology 4, 1988 (398).

    Article  Google Scholar 

  41. R. Prescott and M. J. Graham, Oxidation of Metals 38, 1992 (233).

    Article  Google Scholar 

  42. M. Schütze, Oxidation of Metals 24, 1985 (199).

    Article  Google Scholar 

  43. C. Liu and A. M. Huntz, Materials Science and Engineering A 160, 1993 (113).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support by National Natural Science Foundations of China (51175177, 51322510, 51371082). The author Xiancheng Zhang is also grateful for the support by Special Programs for Key Basic Research of Science and Technology Commission of Shanghai Municipality (13DJ1400202 and 12JC1403200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiancheng Zhang.

Appendix

Appendix

If the dislocation in the boundary climbs rate during oxidation was dL/dt, then the growth strain rate can be expressed as [6]

$$ \dot{\varepsilon }_{ox}^{g} = \frac{\theta }{d}\frac{dL}{dt} $$
(30)

where \( \theta \) represents the angle tilt boundary and d is the grain size, which are stress independent. Climb by a distance of \( \varDelta L \) requires the addition of n molecules of oxide per unit length, 1, of the dislocation line, i.e.,

$$ \left| b \right|\varDelta L.1 = n\varOmega_{ox} $$
(31)

where \( \varOmega_{ox} \) is the volume of a molecule of the oxide, and b is the Burgers vector of the edge dislocation in the grain boundary. In such a case, the dislocation climbing rate can be expressed as

$$ \frac{dL}{dt} = \frac{{\varOmega_{ox} }}{b.1}\frac{dn}{dt} $$
(32)

Then, the lateral growth strain rate can be rewritten as

$$ \dot{\varepsilon }_{ox}^{g} = \frac{{\varOmega_{ox} \theta }}{bd.1}\frac{dn}{dt} $$
(33)

The climb of the dislocations is limited by the attachment of diffusing species to the dislocation cores, i.e., \( dn/1.dt \). The net rate of attachment to each dislocation core will be equal to the rate of the attachment by trapping minus the rate at which ions detach by the thermal excitation. If the traps are spaced an average distance a along the dislocation line, the net rate of attachment can be expressed as [6]

$$ \frac{dn}{1.dt} = \frac{A}{a}J_{v} \exp \left( {\frac{{ - \sigma_{ox} \varDelta \varOmega }}{kT}} \right) - \frac{B}{a}\exp \left( {\frac{{ - E_{T} + \sigma_{ox} \varDelta \varOmega }}{kT}} \right) $$
(34)

where A represents the cross-section for diffusing ion to attach to the dislocation core per unit length of dislocation, B is an effective diffusion jump frequency and E T is the trap energy. J v is the diffusion flux without any stresses in the oxide then the item \( J_{v} \cdot \exp \left( { - \sigma_{ox} \varDelta \varOmega /kT} \right) \) could be used to express the stress dependent diffusion flux.

This expression seems to conflict with that of Evans, i.e., \( J_{v} \cdot \exp \left( {\sigma_{ox} \varDelta \varOmega /kT} \right) \). However, Clarke [6] also mentioned that large compressive stress would decrease the diffusivity. Hence, \( \sigma_{ox} \) represents the stress level in Clarke’s expression while it represents the oxide stress in that of the Evans. Thus, their points coincide with each other. According to Clarke’s suggestion, the attachment rate was much large than the detach rate [6]. Thus, neglecting the second item of Eq. 34 and substituting it into Eq. 33, the lateral growth strain rate is proportional to the diffusion flux

$$ \dot{\varepsilon }_{ox}^{g} = \frac{{\varOmega_{ox} \theta A}}{bda}J_{v} \exp \left( {\frac{{ - \sigma_{ox} \varDelta \varOmega }}{kT}} \right) $$
(35)

It is well known that the scale growth rate was proportional to the diffusion flux, i.e.,

$$ \dot{h}_{ox} \propto J_{v} \exp \left( {\frac{{ - \sigma_{ox} \varDelta \varOmega }}{kT}} \right) $$
(36)

Hence, the lateral growth strain rate is proportional to the scaling rate and this relationship can be expressed as

$$ \dot{\varepsilon }_{g} = D_{ox} \dot{h}_{ox} $$
(37)

where the lateral growth constant, D ox , is determined by some stress independent parameters, including \( \theta \), d, \( \varOmega_{ox} \), A, a and b et al.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, X., Tu, ST. et al. Analytical Modeling on Stress Assisted Oxidation and its Effect on Creep Response of Metals. Oxid Met 82, 311–330 (2014). https://doi.org/10.1007/s11085-014-9493-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9493-4

Keywords

Navigation