Skip to main content
Log in

Gas Phase Initial Oxidation of Incoloy 800 Surfaces

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The surface oxidation of Incoloy 800 was studied using dilute O2 gas at temperatures of 300 °C. Samples with two differing grain sizes were studied using time-of flight secondary ion mass spectrometry (ToF–SIMS) and X-ray photoelectron spectroscopy (XPS) as primary analysis tools. A multi-layered oxide film was detected and was composed of an exterior gamma-Fe2O3 with a Cr2O3 layer at the oxide–metal interface also containing significant concentrations of NiCr2O4. Minor concentrations of another spinel oxide, NiFe2O4 were distributed throughout the film. The kinetics of oxidation growth was found to follow a direct logarithmic relationship for both grain sizes, suggesting that the oxide would be a suitably protective. Very small oxide nodules formed at later stages, particularly for the small grained samples. A protocol for assessment of XPS spectral envelopes is advanced. The method measures the percent residual intensities remaining after spectral subtraction of reference spectra and appears to be an effective means for screening of possible components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. G. Hurst, Canada Enters the Nuclear Age: A Technical History of Atomic Energy of Canada Limited (McGill-Queen’s University Press, Canada, 1997), p. 279.

    Google Scholar 

  2. Incoloy Alloy 800H and HT Specification Sheet, Special Metals Corporation, http://www.specialmetals.com.

  3. S. J. Patel, Journal of the Minerals, Metals and Materials Society 58, 18 (2006).

    Article  CAS  Google Scholar 

  4. W. F. Chu and A. Rahmel, Oxidation of Metals 15, 331 (1981).

    Article  CAS  Google Scholar 

  5. P. G. Stone, J. Orr, and J. G. Guest, Journal of the British Nuclear Energy Society 14, 15 (1975).

    Google Scholar 

  6. N. Cabrera and N. F. Mott, Reports on Progress in Physics 12, 163 (1948–1949).

    Article  Google Scholar 

  7. G. C. Wood, Oxidation of Metals 2, 11 (1970).

    Article  CAS  Google Scholar 

  8. G. C. Wood and F. H. Stott, Materials Science and Technology 3, 519 (1987).

    CAS  Google Scholar 

  9. J. C. Langevoort, I. Sutherland, L. J. Hanekamp, and P. J. Gellings, Applied Surface Science 28, 167 (1987).

    Article  CAS  Google Scholar 

  10. J. C. Langevoort, L. J. Hanekamp, and P. J. Gellings, Applied Surface Science 28, 189 (1987).

    Article  CAS  Google Scholar 

  11. I. K. Koshelev, A. P. Paulikas, M. Beno, G. Jennings, J. Linton, M. Grimsditch, S. Uran, and W. Veal, Oxidation of Metals 68, 37 (2007).

    Article  CAS  Google Scholar 

  12. A. Al-Meshari and J. Little, Oxidation of Metals 69, 109 (2008).

    Article  CAS  Google Scholar 

  13. D. Rohnert, F. Phillipp, H. Reuther, T. Weber, E. Wessel, and M. Schutze, Oxidation of Metals 68, 271 (2007).

    Article  Google Scholar 

  14. M. Yamawaki, M. Mito, and K. Masayoshi, Journal of the Japan Institute of Metals 18, 567 (1977).

    CAS  Google Scholar 

  15. N. Hussain, K. A. Shahid, I. H. Khan, and S. Rahman, Oxidation of Metals 41, 251 (1994).

    Article  CAS  Google Scholar 

  16. M. Walter, M. Schutze, and A. Rahmel, Oxidation of Metals 40, 37 (1993).

    Article  CAS  Google Scholar 

  17. A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart,and N. S. McIntyre, Surface Science 600, 1771 (2006).

    Article  CAS  Google Scholar 

  18. B. P. Payne, A. P. Grosvenor, M. C. Biesinger, B. A. Kobe, and N. S. McIntyre, Surface and Interface Analysis 39, 582 (2007).

    Article  CAS  Google Scholar 

  19. M. C. Biesinger, C. Brown, J. R. Mycroft, R. D. Davidson, and N. S. McIntyre, Surface and Interface Analysis 36, 1550 (2004).

    Article  CAS  Google Scholar 

  20. A. P. Grosvenor, B. A. Kobe, and N. S. McIntyre, Surface Science 572, 217 (2004).

    Article  CAS  Google Scholar 

  21. A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre, Surface and Interface Analysis 36, 1564 (2004).

    Article  CAS  Google Scholar 

  22. A. C. Lloyd, J. J. Noël, N. S. McIntyre, and D. W. Shoesmith, Electrochimica Acta 49, 3015 (2004).

    Article  CAS  Google Scholar 

  23. B. Strohmeier, Surface and Interface Analysis 15, 51 (1990).

    Article  CAS  Google Scholar 

  24. CasaXPS Software, Version 2.3.15 (c) (Casa Software Ltd).

  25. D. A. Shirley, Physical Review B 55, 4709 (1972).

    Article  Google Scholar 

  26. R. P. Gupta and S. K. Sen, Physical Review B10, 71 (1974).

    Google Scholar 

  27. B. M. Weckhuysen, L. M. De Ridder, P. J. Grobet, and R. A. Schoonheydt, Journal of Physical Chemistry 99, 320 (1995).

    Article  CAS  Google Scholar 

  28. B. P. Payne, P. Keech, and N. S. McIntyre, Corrosion Science (submitted).

  29. M. C. Biesinger, B. P. Payne, A. Grosvenor, L. M. W. Lau, A. R. Gerson, and R St C Smart, Applied Surface Science 257, 2717 (2011).

    Article  CAS  Google Scholar 

  30. M. Aronniemi, J. Lahtinen, and P. Hautojarvi, Surface and Interface Analysis 36, 1004 (2004).

    Article  CAS  Google Scholar 

  31. R. Grau-Crespo, A. Y. Al-Baitai, I. Saadoune, and N. H. De Leeuw, Journal of Physics: Condensed Matter 22, 1 (2010).

    Article  Google Scholar 

  32. N. S. McIntyre, T. C. Chan, and C. Chen, Oxidation of Metals 33, 457 (1990).

    Article  CAS  Google Scholar 

  33. B. Chattopadhyay and G. C. Wood, Journal of the Electrochemical Society 117, 1163 (1970).

    Article  CAS  Google Scholar 

  34. J. S. Armijo, D. L. Douglass, and R. A. Huggins, Journal of the Electrochemical Society: Solid-State: Science and Technology 120, 825 (1973).

    CAS  Google Scholar 

  35. T. Yamaguchi and T. Kimura, Journal of the American Ceramics Society 59, 333 (1976).

    Article  CAS  Google Scholar 

  36. B. Gillot, J. Tyronomicz, and A. Roussett, Journal of Materials Research Bulletin 10, 775 (1975).

    Article  CAS  Google Scholar 

  37. B. Payne and N. S. McIntyre, Journal of Electron Spectroscopy and Related Phenomena 175, 155 (2009).

    Article  Google Scholar 

  38. Z. Zeng, K. Natesan, and V. A. Marconi, Oxidation of Metals 58, 147 (2002).

    Article  CAS  Google Scholar 

  39. M. Walter, M. Schutze, and A. Rahmel, Oxidation of Metals 40, 37 (1993).

    Article  CAS  Google Scholar 

  40. I. G. Crouch and J. C. Scully, Oxidation of Metals 15, 101 (1981).

    Article  CAS  Google Scholar 

  41. K. Kuroda, P. A. Labun, G. Welsch, and T. E. Mitchell, Oxidation of Metals 19, 117 (1983).

    Article  CAS  Google Scholar 

  42. N. Cabrera and N. F. Mott, Reports on Progress in Physics 12, 163 (1948–1949).

    Article  Google Scholar 

Download references

Acknowledgments

The assistance of Dr. H.Y. Nie and Mr. R. Davidson of Surface Science Western for SIMS and SEM measurements is appreciated. Dr. B. Payne is thanked for his advice on XPS measurements. The financial assistance of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the CANDU Owners Group is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Stewart McIntyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, M.W., McIntyre, N.S. Gas Phase Initial Oxidation of Incoloy 800 Surfaces. Oxid Met 79, 179–200 (2013). https://doi.org/10.1007/s11085-012-9316-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9316-4

Keywords

Navigation