Skip to main content
Log in

Oxidation of Fe–22Cr Coated with Co3O4: Microstructure Evolution and the Effect of Growth Stresses

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of a commercially available Fe–22Cr alloy coated with a Co3O4 layer by metal organic—chemical vapor deposition was investigated in air with 1% H2O at 1,173 K and compared to the oxidation behavior of the non-coated alloy. The oxide morphology was examined with X-ray diffraction, electron microscopy, and energy dispersive X-ray spectroscopy. Cr2O3 developed in between the Co3O4 coating and the alloy, while alloying elements of the substrate were incorporated into the coating. Particular attention was devoted to possible sources of growth stresses and the effect of the growth stresses on microstructure evolution in the scales that developed on the non-coated and the coated Fe–22Cr alloy. Microstructural features suggested that scale spallation on coated Fe–22Cr occurred as a result of superimposing thermal stresses during cooling onto the growth stresses, that had developed during oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. XRD was performed in transmission geometry with ψ maintained at 90° (sin2(ψ)-method). The strains were measured by the shift of the peaks in the 2θ-range: 10–30°. Calibration was performed before each measurement using a Cr2O3 powder reference

  2. The sin2(ψ)-method was used in the stress measurement. The diffraction of the (166) plane (∼2θ-range: 53–56°) was measured at different tilt-angles. Calibration was performed using a Cr2O3 powder reference

  3. The measurements were performed by XRD using the sin2(ψ)-method. The diffraction of the (226) lattice plane in Cr2O3 (∼2θ-range: 143–156°) was measured at different tilt-angles. The peak overlapped with the diffraction peak from the (311) planes in the Ni–30Cr substrate at temperatures above 873 K

  4. The stress measurements were performed by Raman spectroscopy

  5. It is noted that the present observations are consistent with the hypothesis in ref 21 that whiskers grow under conditions where the supply of oxygen atoms is limited

References

  1. W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Material at High Temperature 20, 115 (2003)

    CAS  Google Scholar 

  2. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, UK, 1988) pp. 361–369

    Google Scholar 

  3. Y. P. Jacob, V. A. C. Haanappel, M. F. Stroosnijder, H. Buscail, P. Fielitz, and G. Borchardt, Corrosion Science 44, 2027 (2002)

    Article  CAS  Google Scholar 

  4. S. Chevalier, G. Bonnet, P. Fielitz, G. Strehl, S. Weber, G. Borchardt, J. C. Colson, and J. P. Larpin, Material at High Temperature 17, 247 (2000)

    CAS  Google Scholar 

  5. S. Chevalier, G. Strehl, J. Favergeon, F. Desserrey, S. Weber, O. Heintz, G. Borchardt, and J. P. Larpin, Material at High Temperature 20, 253 (2003)

    Article  CAS  Google Scholar 

  6. H. E. Evans, International Materials Reviews 40, 1 (1995)

    CAS  Google Scholar 

  7. J. G. Goedjen, J. H. Stout, Q. Guo, and D. A. Shores, Materials Science and Engineering A177, 115 (1994)

    Google Scholar 

  8. J. Mougin, N. Rosman, G. Lucazeau, and A. Galerie, Journal of Raman Spectroscopy 32, 739 (2001)

    Article  CAS  Google Scholar 

  9. D. Zhu, J. H. Stout, and D. A. Shores, Materials Science Forum 251–254, 333 (1997)

    Google Scholar 

  10. M. Schütze, in Electronic Proc. Intern. Symposium “Corrosion Science in the 21st Century”, 7th–11th of July 2003, Manchester, UK

  11. S. Daghigh, J. L. Lebrun, and A. M. Huntz, Materials Science Forum 251–254, 381 (1997)

    Google Scholar 

  12. A. M. Huntz, S. Daghigh, A. Piant, and J. L. Lebrun (1998) Materials Science and Engineering A248, 44 (1997)

    CAS  Google Scholar 

  13. J. Mougin, A. Galerie, G. Lucazeau, and L. Abello, Materials Science Forum 369–372, 841 (2001)

    Google Scholar 

  14. Z. Suo, J. Mech. Phys. Solids, 43, 829 (1995)

    Article  CAS  Google Scholar 

  15. Y. Larring and T. Norby, Journal of Electrochemical Society 147, 3251 (2000)

    Google Scholar 

  16. Sandvik AB, Sweden (www.sandvik.com)

  17. M. Burriel, G. Garcia, J. Santiso, A. N. Hansson, S. Linderoth, and A. Figueras, Thin Solid Films 473, 98 (2005)

    Article  CAS  Google Scholar 

  18. K. Ledjeff, A. Rahmel, and M. Schorr, Werkstoffe Korrosion 30, 767 (1979)

    Article  CAS  Google Scholar 

  19. M. Lenglet, F. Delaunay, and B. Lefez, Materials Science Forum 251–254, 267 (1997)

    Article  Google Scholar 

  20. A. N. Hansson and M. A. J. Somers, Materials at High Temperature 22, 223 (2005)

    Google Scholar 

  21. H. Kurokawa, K. Kawamura, and T. Maruyama, Solid State Ionics 168, 13 (2004)

    Article  CAS  Google Scholar 

  22. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, Oxidation Metals 37, 81 (1992)

    Article  CAS  Google Scholar 

  23. R. J. Makkonen, Suomen Kemistilehti B35, 230 (1962)

    Google Scholar 

  24. A. N. Hansson, S. Linderoth, M. Mogensen, and M. A. J. Somers, Journal of Alloys and Compounds 402, 194 (2005)

    Article  CAS  Google Scholar 

  25. S. C. Tsai, A. M. Huntz, C. Dolin, and C. Monty, Radiation Effects Defect Solids 137, 285 (1995)

    CAS  Google Scholar 

  26. S. C. Tsai, A. M. Huntz, and C. Dolin, Materials Science and Engineering A212, 6 (1996)

    CAS  Google Scholar 

  27. X. Chen, J. W. Hutchinson, M. Y. He, and A. G. Evans, Acta Materialia 51, 2017 (2003)

    Article  CAS  Google Scholar 

  28. D. L. Beke, I. A. Szabó, Z. Erdélyi, and G. Opposits, Materials Science and Engineering A 387–389, 4 (2004)

    Article  CAS  Google Scholar 

  29. L. Mikkelsen and S. Linderoth, Materials Science and Engineering A361, 198 (2003)

    CAS  Google Scholar 

  30. A. N. Hansson, Ph.D. Thesis, “Oxides in the Co–Cr–Fe–O system and oxidation of coated Fe–22Cr”, 2004

Download references

Acknowledgement

Dr. Leona Korcakova, Risø National Laboratory, is acknowledged for assistance with the TEM investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette N. Hansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, A.N., Burriel, M., Garcia, G. et al. Oxidation of Fe–22Cr Coated with Co3O4: Microstructure Evolution and the Effect of Growth Stresses. Oxid Met 68, 23–36 (2007). https://doi.org/10.1007/s11085-007-9060-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-007-9060-3

Keywords

Navigation