Skip to main content
Log in

Substrate Effect on the High-Temperature Oxidation Behavior of a Pt-Modified Aluminide Coating. Part I: Influence of the Initial Chemical Composition of the Coating Surface

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of substrate composition on the oxidation behavior of the industrial NiPtAl coating RT22TMwas investigated by studying the isothermal and cyclic-oxidation behavior of this coating deposited on three different Ni-base superalloys (CMSX-4TM, SCBTM and IN792TM). Isothermal tests were performed at 900, 1050 and 1150°C for 100 h. Cyclic oxidation was studied at 900°C with a holding time of 300 h for up to 52 cycles (i.e, 15,600 h at 900°C). Thermogravimetric analysis (TGA), X-ray diffraction (XRD), microstructural and analytical investigations using scanning-electron microscopy (SEM) and transmission-electron microscopy (TEM), both equipped with energy-dispersive X-ray spectroscopy (EDS) were performed to characterize the oxidation behavior of the systems studied. An effect of the superalloy substrate was observed and related to the initial chemical composition of the coating surface which depends on the superalloy and the associated heat treatments. The effect of the substrate’s alloying elements is discussed. Particularly the influence of Ti and Ta that formed rutile-type oxides inducing oxide-scale cracking and spallation. The excellent resistance to cyclic oxidation of the coating systems studied at 900°C was also demonstrated from very long duration tests of 15,600 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

Similar content being viewed by others

References

  1. Nicholls J. R. (2003) MRS Bulletin 9:659

    Google Scholar 

  2. Angenete J., Stiller K. (2003) Material Science and Engineering A316:182

    Google Scholar 

  3. Angenete J., Stiller K.(2001) Surface and Coatings Technology 150:107

    Article  Google Scholar 

  4. Göbel M., Rahmel A., Schutze M., Schorr M., Wu W. T. (1994) Materials at High Temperature 12:301

    Google Scholar 

  5. Pint B. A., Martin J. R., Hobbs L. W. (1995) Solid State Ionics 78:99

    Article  CAS  Google Scholar 

  6. Tolpygo V. K. (1999) Oxidation of Metals 51:449

    Article  CAS  Google Scholar 

  7. Oquab D., Lafont M.-C., Viguier B., Poquillon D., Monceau D. (2004) Materials Science Forum 461–464:289

    Google Scholar 

  8. S. Lartigue-Korinek, C. Legros, C. Carry, F. Herbst, Journal of the European Ceramic Society, 26, 2219 (2006).

    Article  CAS  Google Scholar 

  9. Hindam H., Whittle D. P. (1982) Oxidation of Metals 18:245

    Article  CAS  Google Scholar 

  10. Schumann E., Yang J. C., Graham M. J., Ruehle M. (1996) Materials and Corrosion 47:631

    Article  CAS  Google Scholar 

  11. Pint B. A., Martin J. R., Hobbs L. W. (1993) Oxidation of Metals 39:167

    Article  CAS  Google Scholar 

  12. Young E. W., Witt J. H. W. d. (1985) Solid State Ionics 16:39

    Article  CAS  Google Scholar 

  13. Pint B. A. (1994) Electrochemical Society Extended Abstacts 94–2:835

    Google Scholar 

  14. Evans H. E. (1995) International Materials Reviews 40:1

    CAS  Google Scholar 

  15. Tolpygo V. K., Clarke D. R., Murphy K. S. (2001) Metallurgical and Materials Transactions A 32A:1467

    CAS  Google Scholar 

  16. Pint B. A., Tortorelli P. F., Wright I. G. (2002) Oxidation of Metals 58:73

    Article  CAS  Google Scholar 

  17. Vialas N., Monceau D., Pieraggi B. (2004) Materials Science Forum 461:747–464

    Google Scholar 

  18. Pint B., Wright I., Lee W., Zhang Y., Prübner K., Alexander K. (1998) Materials Science and Engineering A A245:201

    Article  Google Scholar 

  19. Littner A., Schütze M. (2003) JCSE 6:H023

    Google Scholar 

  20. B. A. Pint, J. A. Haynes, K. L. More, I. G. Wright, C. Leyens, in Superalloys 2000, TMS, 629–638 (2000).

  21. Purvis A. L., Warnes B. M. (2001) Surface and Coatings Technology 146–1471:1

    Article  Google Scholar 

  22. A. El-Turki, G. C. Allen, C. M. Younes, J. C. C. Day (2004) Materials Corrosion 55:24

    Article  CAS  Google Scholar 

  23. Li M. J., Sun X. F., Guan H. R., Jiang X. X., Hu Z. Q. (2004) Oxidation of Metals 61:91

    Article  CAS  Google Scholar 

  24. P Caron, A. Escalé, G. McColvin, M. Blacker, R. Wahi, and L. Lelait, in 5th International Charles Parsons Turbine Conference: Parsons 2000 Advanced Materials for 21st Century Turbines and Power Plant, Cambridge, UK, 03-07-00 (2000).

  25. Monceau D., Pieraggi B. (1998) Oxidation of Metals 50:477

    Article  CAS  Google Scholar 

  26. N. Vialas, phD thesis, Institut National Polytechnique de Toulouse (2004).

  27. Huneau B., Rogl P., Zeng K., Schmid-Fetzer R., Bohn M., Bauer J. (1999) Intermetallics 7:1337

    Article  CAS  Google Scholar 

  28. Ansara I., Selleby M. (1994) Calphad 18:99

    Article  CAS  Google Scholar 

  29. Zhang Y. H., Knowles D. M., Withers P. J. (1998) Surface and Coatings Technology 107:76

    Article  CAS  Google Scholar 

  30. M. Durand-Charre, The Microstructure of Superalloys (Gordon and Breach Science Publishers, 1997), 124p.

  31. Brumm M. W., Grabke H. J. (1992) Corrosion Science 33:1677

    Article  CAS  Google Scholar 

  32. Gleeson B., Wang W., Hayashi S., Sordelet D. (2004) Materials Science Forum 461–464:213

    Article  Google Scholar 

  33. Doychak J., Smialek J. L., Mitchell T. E. (1989) Metallurgical and Materials Transactions A A20:499

    Google Scholar 

  34. Pieraggi B., Dabosi F. (1987) Werkstoffe and korrosion 38:575

    Article  Google Scholar 

  35. J. Angenete, Doctoral dissertation, Chalmers University of Technology Göteborg University (2002).

  36. Krishna G. R., Das D. K., Singh V., Joshi S. V. (1998) Material Science and Engineering A251:40

    Article  CAS  Google Scholar 

  37. Benoist J., Badawi K. F., Mahlié A., Ramade C. (2003) Surface and Coatings Technology 182:14

    Article  CAS  Google Scholar 

  38. Das D. K., Singh V., Joshi S. V. (2002) Oxidation of Metals 57:245

    Article  CAS  Google Scholar 

  39. Li B., Gleeson B. (2004) Oxidation of Metals 62:45

    Article  CAS  Google Scholar 

  40. Grant F. A. (1959) Reviews of Modern Physics 31:646

    Article  CAS  Google Scholar 

  41. Pilling N., Bedworth R. (1923) Journal of Instutition Metals 29:529

    Google Scholar 

  42. Pint B. A. (1997) Oxidation of Metals 48:303

    Article  CAS  Google Scholar 

  43. N. Vialas, D. Monceau, Oxidation of Metals, Part II of this paper, submitted (2006)

  44. N. Vialas, D. Monceau and B. Pieraggi, to be published (2006)

Download references

Acknowledgments

The authors thank EEC for financial support through the European project Allbatros (NOENK5-CT2000-00081) and all partners for their contribution. Sincere thanks are expressed to Prof. B. Pieraggi for the fruitful discussions and helpful comments on the manuscript. Marie-Christine Lafont is acknowledged for the help in preparation of TEM samples and for the TEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Monceau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vialas, N., Monceau, D. Substrate Effect on the High-Temperature Oxidation Behavior of a Pt-Modified Aluminide Coating. Part I: Influence of the Initial Chemical Composition of the Coating Surface. Oxid Met 66, 155–189 (2006). https://doi.org/10.1007/s11085-006-9024-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-006-9024-z

Keywords

Navigation