Skip to main content
Log in

Optical efficiency enhancement in luminescent solar concentrators using a quasi-periodic reflector

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The present paper aims to design a tunable polymeric multilayer dielectric reflector (PMD) to eliminate escape-cone effects in luminescent solar concentrators (LSCs). The PMD structure consisted of periodically and quasi-periodically stacked layers of polycarbonate (PC) and polymethyl methacrylate (PMMA). Monte Carlo and Transfer Matrix analysis demonstrated that the transmission band gap of a periodic reflector (PR) exhibited a narrow bandwidth and experienced a blue shift with increasing incident angles, resulting in a limited overlap with the dye emission band and inadequate capture of escape cone emissions. Conversely, the quasi-periodic reflector (QPR) achieved a broader transmission band gap, leading to complete overlap and higher efficiency. Furthermore, PMDs enhanced sunlight absorption in LSCs by reflecting transmitted solar photons through the LSC and increased reabsorption losses by minimizing escape cone losses. The results show optical efficiency of 12% and 33% for the LSC with PR and QPR, respectively. Additionally, investigations into optimal dye concentration revealed a change in concentration when PMDs are applied, allowing the system to select a lower optimal concentration to mitigate reabsorption losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bagherzadeh-Khajehmarjan, E., Nikniazi, A., Olyaeefar, B., Ahmadi-Kandjani, S., Nunzi, J.M.: Bulk luminescent solar concentrators based on organic-inorganic CH3NH3PbBr3 perovskite fluorophores. Sol. Energy Mater. Sol. Cells 192, 44–51 (2019)

    Article  Google Scholar 

  • Bagherzadeh-Khajehmarjan, E., Shakouri, S.M., Nikniazi, A., Ahmadi-Kandjani, S.: Boosting the efficiency of luminescent solar concentrator devices based on CH3NH3PbBr3 perovskite quantum dots via geometrical parameter engineering and plasmonic coupling. Org. Electron. 109, 106629 (2022)

    Article  Google Scholar 

  • Cheng, J., Li, H., Cao, Z., Wu, D., Liu, C., Pu, H.: Nanolayer coextrusion: an efficient and environmentally friendly micro/nanofiber fabrication technique. Mater. Sci. Eng. C 95, 292–301 (2019)

    Article  Google Scholar 

  • Colard, M., Racine, B., Meunier-Della-Gatta, S., Grosso, D., Kerzabi, B., Millard, K., Lee, Y., Shum, A., Haeberlé, O., Martinez, C.: Study of a liquid crystal impregnated diffraction grating for active waveguide addressing. In: Emerging Liquid Crystal Technologies XVII, vol. 12023, p. 1202302. SPIE. (2022)

  • Debije, M.G., Verbunt, P.P.: Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2(1), 12–35 (2012)

    Article  Google Scholar 

  • Debije, M.G., Van, M.P., Verbunt, P.P., Kastelijn, M.J., van der Blom, R.H., Broer, D.J., Bastiaansen, C.W.: Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. Appl. Opt. 49(4), 745–751 (2010)

    Article  ADS  Google Scholar 

  • Fassl, P., Lami, V., Berger, F.J., Falk, L.M., Zaumseil, J., Richards, B.S., Howard, I.A., Vaynzof, Y., Paetzold, U.W.: Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter 4(4), 1391–1412 (2021)

    Article  Google Scholar 

  • Habli, O., Zaghdoudi, J., Kanzari, M.: Omnidirectional photonic band gap based on nonlinear periodic and quasi-periodic photonic crystals. Appl. Phys. B 128(7), 118–127 (2022)

    Article  ADS  Google Scholar 

  • Imura, H., Okano, K.: Temperature dependence of the viscosity coefficients of liquid crystals. Jpn. J. Appl. Phys. 11(10), 1440–1445 (1972)

    Article  ADS  Google Scholar 

  • Katsidis, C.C., Siapkas, D.I.: General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41(19), 3978–3987 (2002)

  • Khoo, I.C.: Liquid crystals. John Wiley & Sons, 214–285 (2022)

    Book  Google Scholar 

  • Klimov, V.I., Baker, T.A., Lim, J., Velizhanin, K.A., McDaniel, H.: Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots. ACS Photonics 3(6), 1138–1148 (2016)

    Article  Google Scholar 

  • Kocher-Oberlehner, G., Bardosova, M., Pemble, M., Richards, B.S.: Planar photonic solar concentrators for building-integrated photovoltaics. Sol. Energy Mater. Sol. Cells 104, 53–57 (2012)

    Article  Google Scholar 

  • Li, Y., Zhang, X., Zhang, Y., Dong, R., Luscombe, C.K.: Review on the role of polymers in luminescent solar concentrators. J. Polym. Sci., Part a: Polym. Chem. 57(3), 201–215 (2019)

    Article  ADS  Google Scholar 

  • Lu, B., Zhang, H., Maazouz, A., Lamnawar, K.: Interfacial phenomena in multi-micro-/nanolayered polymer coextrusion: a review of fundamental and engineering aspects. Polymers 13(3), 417 (2021)

    Article  Google Scholar 

  • Mafi, M., Esmaile, A.H.: Inverse design of a high-quality factor multi-purpose optical biosensor. IET Optoelectron. 16(6), 266–276 (2022)

    Article  Google Scholar 

  • Marques-Hueso, J., Peretti, R., Abargues, R., Richards, B.S., Seassal, C., Martínez-Pastor, J.P.: Photonic crystal-driven spectral concentration for upconversion photovoltaics. Adv. Opt. Mater. 3(4), 568–574 (2015)

    Article  Google Scholar 

  • Meinardi, F., Bruni, F., Brovelli, S.: Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2(12), 1–9 (2017)

    Article  Google Scholar 

  • Mitov, M.: Cholesteric liquid crystals with a broad light reflection band. Adv. Mater. 24(47), 6260–6276 (2012)

    Article  ADS  Google Scholar 

  • Miyagi, K., Teramoto, Y.: Construction of functional materials in various material forms from cellulosic cholesteric liquid crystals. Nanomaterials 11(11), 2969–2994 (2021)

    Article  Google Scholar 

  • Moraitis, P., Schropp, R.E.I., Van Sark, W.G.J.H.M.: Nanoparticles for luminescent solar concentrators-a review. Opt. Mater. 84, 636–645 (2018)

    Article  ADS  Google Scholar 

  • Nikolaidou, K., Sarang, S., Hoffman, C., Mendewala, B., Ishihara, H., Lu, J.Q., Ilan, B., Tung, V., Ghosh, S.: Hybrid perovskite thin films as highly efficient luminescent solar concentrators. Adv. Opt. Mater. 4(12), 2126–2132 (2016)

    Article  Google Scholar 

  • Okil, M., Salem, M.S., Abdolkader, T.M., Shaker, A.: From crystalline to low-cost silicon-based solar cells: a review. SILICON 14(5), 1895–1911 (2022)

    Article  Google Scholar 

  • Oliveto, V.J., Boyd, C., Smith, D., Hughes, M., Borca-Tasciuc, D.A.: Luminescent solar concentrators: a review of nanoengineering opportunities for reducing surface losses. IEEE Trans. Nanotechnol. 21, 360–366 (2022)

    Article  ADS  Google Scholar 

  • Rafiee, M., Chandra, S., Ahmed, H., McCormack, S.J.: An overview of various configurations of luminescent solar concentrators for photovoltaic applications. Opt. Mater. 91, 212–227 (2019)

    Article  ADS  Google Scholar 

  • Richards, B.S., Howard, I.A.: Luminescent solar concentrators for building integrated photovoltaics: opportunities and challenges. Energy Environ. Sci. 16(8), 3214–3239 (2023)

    Article  Google Scholar 

  • Rodrigues, A.V., de Souza, D.A.R., Garcia, F.D.R., Ribeiro, S.J.L.: Renewable energy for a green future: electricity produced from efficient luminescent solar concentrators. Solar Energy Adv. 2, 100013 (2022)

    Article  Google Scholar 

  • Rui, X., Wang, G., Lu, Y., Yun, L.: Transfer matrix method for linear multibody system. Multibody Sys. Dyn. 19, 179–207 (2008)

    Article  MathSciNet  Google Scholar 

  • Shu, J., Zhang, X., Wang, P., Chen, R., Zhang, H., Li, D., Zhang, P., Xu, J.: Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all-inorganic perovskite quantum dots. Physica B 548, 53–57 (2018)

    Article  ADS  Google Scholar 

  • Suzuki, M.: Transfer-matrix method and Monte Carlo simulation in quantum spin systems. Phys. Rev. B 31(5), 2957–2965(1985)

    Article  ADS  Google Scholar 

  • Van Sark, W.G., Barnham, K.W., Slooff, L.H., Chatten, A.J., Büchtemann, A., Meyer, A., McCormack, S.J., Koole, R., Farrell, D.J., Bose, R., Bende, E.E.: Luminescent solar concentrators-a review of recent results. Opt. Express 16(26), 21773–21792 (2008)

    Article  ADS  Google Scholar 

  • Wang, Z., Guo, C., Jiang, W.: Omnidirectional reflection extension in a one-dimensional superconducting-dielectric binary graded photonic crystal with graded geometric layers thicknesses. Prog. Electromagn. Res. Lett. 42, 13–22 (2013)

    Article  Google Scholar 

  • Wilson, L.R., Richards, B.S.: Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators. Appl. Opt. 48(2), 212–220 (2009)

    Article  ADS  Google Scholar 

  • Wilson, L.R., Klampaftis, E., Richards, B.S.: Enhancement of power output from a large-area luminescent solar concentrator with 4.8× concentration via solar cell current matching. IEEE J. Photovolt. 7(3), 802–809 (2017)

    Article  Google Scholar 

  • Yang, C., Atwater, H.A., Baldo, M.A., Baran, D., Barile, C.J., Barr, M.C., Bates, M., Bawendi, M.G., Bergren, M.R., Borhan, B., Brabec, C.J.: Consensus statement: standardized reporting of power-producing luminescent solar concentrator performance. Joule 6(1), 8–15 (2022)

    Article  Google Scholar 

  • Zettl, M., Mayer, O., Klampaftis, E., Richards, B.S.: Investigation of host polymers for luminescent solar concentrators. Energy Technol. 5(7), 1037–1044 (2017)

    Article  Google Scholar 

  • Zheng, Z., Zhang, Y., Cao, X., Gu, G., Tian, Y., Zhang, X.: Modeling and comparison of bulk and thin-film luminescent solar concentrators based on colloidal perovskite quantum dots. Opt. Lett. 47(17), 4367–4370 (2022)

    Article  ADS  Google Scholar 

  • Zohrabi, R., Namdar, A.: Perfect tunable all-optical diode based on periodic photonic crystal grand graded structures. J. Opt. Commun. 40(3), 187–193 (2019)

    Article  Google Scholar 

  • Zohrabi, R., Namdar, A., Ahmadi-Kandjani, S., Olyaeefar, B.: Influence of the graded index cholesteric liquid crystal reflectors on the luminescent solar concentrator efficiency. Int. J. Opt. Photonics 16(2), 211–220 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

Sincerely appreciate Dr. Ramin Khalil Sarbaz wise counsel during this scientific article editing.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Ramin Zohrabi: investigation, formal analysis, methodology, simulation, conceptualization, writing—original draft. Shadi Daghighazar: writing—review & editing. Abdolrahman Namdar and Sohrab Ahmadi-Kandjani: supervision, formal analysis, validation, writing—review & editing.

Corresponding author

Correspondence to Ramin Zohrabi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohrabi, R., Daghighazar, S., Ahmadi-Kandjani, S. et al. Optical efficiency enhancement in luminescent solar concentrators using a quasi-periodic reflector. Opt Quant Electron 56, 1052 (2024). https://doi.org/10.1007/s11082-024-06947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06947-x

Keywords

Navigation