Skip to main content
Log in

Quantum multi-signature protocol based on Bell state

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present a quantum multi-signature scheme based on Bell state. It allows n (\(n>1\)) signers sign a same file in random order. Bell states are used as information carriers and transmitted among verifier, requester, and signers. In this way, the verifier can verify the correctness of the signature. It is shown that our scheme satisfies the unforgeability and nondeniability of a secure quantum signature in theory and can resist collusive attack. In addition, only the Hadamard operator and four Pauli operators are used to generate a signature, which makes our scheme more feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bai, G.Q.: Researches on Elliptic Curve and the Related Algorithms. XiDian University. (2000)

  • Barnum, H., Crepeau, C., Gottesman, D., et al.: Authentication of quantum messages. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science. Proceedings. IEEE: 449–458 (2002)

  • Bellare, M., Miner, S.: A forward-secure digital signature scheme, Advance in Cryptology-CRYPTO 1999 (M. Wiener, Ed.), LNCS 1666. (1999)

  • Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore 10–19(December), 175–179 (1984)

  • Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    MathSciNet  Google Scholar 

  • Boaron, A., Boso, G., Rusca, D., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 190502 (2018)

    Google Scholar 

  • Cabello, A.: Quantum key distribution in the Holev Olimit. Phys. Rev. Lett. 85, 5635 (2000)

    Google Scholar 

  • Cai, R.Y.Q., Scarani, V.: Finite-key analysis for practical implementations of quantum key distribution. New J. Phys. 11(4), 045024 (2009)

    Google Scholar 

  • Cai, X.Q., Wang, T.Y., Wei, C.Y., et al.: Cryptanalysis of multiparty quantum digital signatures. Quantum Inf. Process. 18, 252 (2019)

    MathSciNet  Google Scholar 

  • Cai, D.Q., Chen, X., Han, Y.H., et al.: Implementation of an E-payment security evaluation system based on quantum blind computing. Int. J. Theor. Phys. 59, 2757–2772 (2020)

    MathSciNet  Google Scholar 

  • Chen, H.M., Jia, H.Y., Wu, X., et al.: Public-key quantum signature for classical messages without third-party verification. Quantum Inf. Process. 21(8), 282 (2022)

    MathSciNet  Google Scholar 

  • Chen, J.J., You, F.C., Li, Z.Z.: Quantum multi-proxy blind signature based on cluster state. Quantum Inf. Process. 21(3), 104 (2022)

    MathSciNet  Google Scholar 

  • Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Google Scholar 

  • Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    MathSciNet  Google Scholar 

  • ElGamal, Taher: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory 31(4), 469–472 (1985)

    MathSciNet  Google Scholar 

  • Fan, L., Cao, C.: A synchronous quantum blind signature scheme with entanglement swapping. Int. J. Quantum Inform. 17(01), 1950007 (2019)

    Google Scholar 

  • Fan, T.T., Lu, D.J., You, M.G., et al.: Multi-proxy signature scheme using five-qubit entangled state based on controlled quantum teleportation. Int. J. Theor. Phys. 61(12), 273 (2022)

    MathSciNet  Google Scholar 

  • Feng, Y., Zhou, J., Li, J., et al.: SKC-CCCO: an encryption algorithm for quantum group signature. Quantum Inf. Process. 21(9), 328 (2022)

    MathSciNet  Google Scholar 

  • Feng, X., Wu, H., Zhou, X., et al.: Quantum blind signature scheme for supply chain financial. Quantum Inf. Process. 22(1), 5 (2022)

    MathSciNet  Google Scholar 

  • Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Google Scholar 

  • Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint quant-ph/0105032 (2001)

  • He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20, 1–21 (2021)

    MathSciNet  Google Scholar 

  • Kumar, K.: Indeterminate Space-Time Quantum Mechanics, Geometrical Interpretation Of Quantum Information Compression, Hallgren’s Efficient Quantum Algorithm For Solving Pell’s Equation, Stronger No-Cloning Theorem, Quantum Template Matching, Perturbative And Nonpert. Adv. Phys. Theor. Appl., 14 (2013)

  • Kuzyk, G.M.: Quantum no-cloning theorem and entanglement. Am. J. Phys. 87(5), 325–327 (2019)

    Google Scholar 

  • Lee, W.K., Jang, K., Song, G., et al.: Efficient implementation of lightweight hash functions on GPU and quantum computers for IoT applications. IEEE Access 10, 59661–59674 (2002)

    Google Scholar 

  • Leung, D.W.: Quantum vernam cipher. arXiv preprint quant-ph/0012077 (2000)

  • Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    MathSciNet  Google Scholar 

  • Liu, G., Ma, W.P., Cao, H., et al.: A novel quantum group proxy blind signature scheme based on five-qubit entangled state. Int. J. Theor. Phys. 58, 1999–2008 (2019)

    MathSciNet  Google Scholar 

  • Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Google Scholar 

  • Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78(17), 3414 (1997)

    Google Scholar 

  • Merkle, R.C.: A certified digital signature. In: Conference on the Theory and Application of Cryptology. New York, NY: Springer New York, 218-238 (1989)

  • Nagata, K., Nakamura, T., Farouk, A., et al.: No-cloning theorem, Kochen–Specker theorem, and quantum measurement theories. Int. J. Theor. Phys. 58, 1845–1853 (2019)

    MathSciNet  Google Scholar 

  • Qin, H., Tang, W.K.S., Tso, R.: Efficient quantum multi-proxy signature. Quantum Inf. Process. 18, 53 (2019)

    MathSciNet  Google Scholar 

  • Qiu, C., Zhang, S., Chang, Y., et al.: Electronic voting scheme based on a quantum ring signature. Int. J. Theor. Phys. 60, 1550–1555 (2021)

    MathSciNet  Google Scholar 

  • Rashkovskiy, S.A.: Quantum mechanics without quanta: the nature of the wave particle duality of light. Quantum Stud.: Math. Found. 3, 147–160 (2016)

    MathSciNet  Google Scholar 

  • Rivest, R.L., Shamir, A., Adleman, L.: On Digital Signatures and Public-Key Cryptosystems. Massachusetts Inst of Tech Cambridge Lab for Computer Science. (1977)

  • Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    MathSciNet  Google Scholar 

  • Wen, X.J., Liu, Y.: A realizable scheme for quantum ordered multiple digital signatures. Acta Electron. Sin. 06, 1079–1083 (2007)

    Google Scholar 

  • Wen, X.J., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleportation. Zeitschrift fur Naturforschung A 62(3–4), 147–151 (2007)

    Google Scholar 

  • Xiao, X.A.: Researches on Elliptic Curve Public Key Cryptosystem in Network Information Security. Wuhan University of Technology. (2003)

  • Xin, X., Yang, Q., Li, F.: Quantum public-key signature scheme based on asymmetric quantum encryption with trapdoor information. Quantum Inf. Process. 19, 233 (2020)

    MathSciNet  Google Scholar 

  • Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14, 2577–2587 (2015)

    MathSciNet  Google Scholar 

  • Yang, Y., Wen, Q.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun., 283(16) (2010)

  • Yang, Y.G., Xu, P., Yang, R., et al.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6(1), 19788 (2016)

    Google Scholar 

  • Ye, T.Y., Li, H.K., Hu, J.L.: Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 59, 2807–2815 (2020)

    Google Scholar 

  • Ye, T.Y., Geng, M.J., Xu, T.J., et al.: Efficient semiquantum key distribution based on single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 21(4), 123.3 (2022)

    MathSciNet  Google Scholar 

  • Yi, X., Cao, C., Fan, L., et al.: Quantum secure multi-party summation protocol based on blind matrix and quantum Fourier transform. Quantum Inf. Process. 20(7), 249 (2021)

    MathSciNet  Google Scholar 

  • Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Google Scholar 

  • Zhang, K., Song, T., Zuo, H., et al.: A secure quantum group signature scheme based on Bell states. Phys. Scr. 87(4), 045012 (2013)

    Google Scholar 

  • Zhang, Y.X., Cao, C., Wang, T.J., et al.: The study of security during quantum dense coding in high-dimensions. Int. J. Theor. Phys. 59, 1957–1965 (2020)

    MathSciNet  Google Scholar 

  • Zhao, X.Q., Chen, H.Y., Wang, Y.Q., et al.: Semi-quantum bi-signature scheme based on W states. Int. J. Theor. Phys. 58, 3239–3251 (2019)

    MathSciNet  Google Scholar 

  • Zheng, T., Chang, Y.: Arbitrated quantum signature scheme with quantum teleportation by using two three-qubit GHZ states. Quantum Inf. Process. 19, 163 (2020)

    MathSciNet  Google Scholar 

  • Zheng, T., Chang, Y., Yan, L., et al.: Semi-quantum proxy signature scheme with quantum walk-based teleportation. Int. J. Theor. Phys. 59, 3145–3155 (2020)

    MathSciNet  Google Scholar 

  • Zou, X., Qiu, D.: Arbitrated quantum signature schemes without using entangled states. arXiv preprint arXiv:1003.2337 (2010)

  • Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)

    Google Scholar 

Download references

Acknowledgements

The project was supported by Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (No. IPOC2022ZT07), P. R. China; National Natural Science Foundation of China (NSFC) under Grant No. 61701035; Yuncheng Vocational and Technical University; BUPT-RAINIER Joint Laboratory of Virtual Reality Innovation Technology and Application.

Funding

State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (IPOC2022ZT07); National Natural Science Foundation of China (NSFC) (61701035); Yuncheng Vocational and Technical University; BUPT-RAINIER Joint Laboratory of Virtual Reality Innovation Technology and Application.

Author information

Authors and Affiliations

Authors

Contributions

ZC, MC, LF, CC wrote the main manuscript text, ZC prepared Fig. 1. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Ling Fan, Cong Cao or Ru Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZY., Chang, M., Fan, L. et al. Quantum multi-signature protocol based on Bell state. Opt Quant Electron 56, 745 (2024). https://doi.org/10.1007/s11082-024-06422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06422-7

Keywords

Navigation