Skip to main content
Log in

X-shaped exposed core highly sensitive plasmonic sensor for cancer cell detection

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

For accurate bio-sample identification, we present a unique optimized surface plasmon resonance sensor based on an X-shaped exposed-core photonic crystal fiber. Applications are made easier by the placement of the target analyte and plasmonic material on the fiber’s exterior surface. The sensor has four separate silica channels that reach from the core to the metallic outer surface creating X-shape. These channels were intentionally placed to provide the highest sensitivity while maintaining the sensor’s ability to be manufactured. Within a refractive index range of 1.33 to 1.40, our optimized sensor demonstrates improved detecting abilities, including a wavelength sensitivity of 8000 nm/RIU and amplitude sensitivity of \(-\)1175.12 \(RIU^{-1}\). The suggested sensor also exhibits exceptional performance parameters, such as a resolution of \(1.25\times 10^{-5}\), a maximum signal-to-noise ratio (SNR) of 2.041 dB, a figure of merit (FOM) of 160.0 \(RIU^{-1}\), a detection accuracy (DA) of 0.02 nm−1, and minimum full width half maxima (FWHM) of 50 nm. When examining variations in the optical properties of the PCF due to different RIs of normal and cancer cells using finite element analysis, we achieve amplitude sensitivities of \(-\)844.91, \(-\)418 and \(-\)1221.8 \(RIU^{-1}\) for HeLa, Basal and MDA-MB-231 cell lines, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper is not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  • Ahmed, K., Ahmed, F., Roy, S., Paul, B.K., Aktar, M.N., Vigneswaran, D., Islam, M.S.: Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens. J. 19(9), 3368–3375 (2019)

    ADS  Google Scholar 

  • Al Mahfuz, M., Hasan, M.R., Momota, M.R., Masud, A., Akter, S.: Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method. OSA Continuum 2(5), 1713–1725 (2019)

    Google Scholar 

  • Al Mahfuz, M., Mollah, M.A., Momota, M.R., Paul, A.K., Masud, A., Akter, S., Hasan, M.R.: Highly sensitive photonic crystal fiber plasmonic biosensor: design and analysis. Opt. Mater. 90, 315–321 (2019)

    ADS  Google Scholar 

  • An, G., Jia, P., Liang, T., Hong, Y., Wang, H., Ghaffar, A., Xiong, J.: Double-sided polished ultra-stable and ultra-sensitive optical fiber sensor. Plasmonics 15, 1471–1479 (2020)

    Google Scholar 

  • Ayyanar, N., Raja, G.T., Sharma, M., Kumar, D.S.: Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 18(17), 7093–7099 (2018)

    ADS  Google Scholar 

  • Bennett, P., Monro, T.M., Richardson, D.: Toward practical holey fiber technology:? fabrication, splicing, modeling, and characterization. Opt. Lett. 24(17), 1203–1205 (1999)

    ADS  Google Scholar 

  • Carrascosa, L.G., Sina, A.A.I., Palanisamy, R., Sepulveda, B., Otte, M.A., Rauf, S., Shiddiky, M.J., Trau, M.: Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation. Chem. Commun. 50(27), 3585–3588 (2014)

    Google Scholar 

  • Chen, C., Gao, S., Chen, L., Bao, X.: Distributed high temperature monitoring of SMF under electrical arc discharges based on OFDR. Sensors 20(22), 6407 (2020)

    ADS  Google Scholar 

  • Chong, J.H., Rao, M.: Development of a system for laser splicing photonic crystal fiber. Opt. Express 11(12), 1365–1370 (2003)

    ADS  Google Scholar 

  • Chong, J.H., Rao, M., Zhu, Y., Shum, P.: An effective splicing method on photonic crystal fiber using co 2 laser. IEEE Photon. Technol. Lett. 15(7), 942–944 (2003)

    ADS  Google Scholar 

  • Dash, J.N., Jha, R.: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014)

    ADS  Google Scholar 

  • Fang, H., Wei, C., Wang, D., Yuan, L., Jiao, S., Bao, Z., Yang, H.: Research on photonic crystal fiber based on a surface plasmon resonance sensor with segmented silver-titanium dioxide film. JOSA B 37(3), 736–744 (2020)

    ADS  Google Scholar 

  • Gao, D., Guan, C., Wen, Y., Zhong, X., Yuan, L.: Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Optics Commun. 313, 94–98 (2014)

    ADS  Google Scholar 

  • Gomez-Cardona, N., Reyes-Vera, E., Torres, P.: High sensitivity refractive index sensor based on the excitation of long-range surface plasmon polaritons in h-shaped optical fiber. Sensors 20(7), 2111 (2020)

    ADS  Google Scholar 

  • Gonzalez-Valencia, E., Herrera, R.A., Torres, P.: Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors. Opt. Express 27(6), 8236–8245 (2019)

    ADS  Google Scholar 

  • Gupta, A., Singh, H., Singh, A., Singh, R.K., Tiwari, A.: D-shaped photonic crystal fiber-based surface plasmon resonance biosensors with spatially distributed bimetallic layers. Plasmonics 15, 1323–1330 (2020)

    Google Scholar 

  • Gómez-Cardona, N.D., Reyes-Vera, E., Torres, P.: Multi-plasmon resonances in microstructured optical fibers: extending the detection range of SPR sensors and a multi-analyte sensing technique. IEEE Sens. J. 18(18), 7492–7498 (2018)

    ADS  Google Scholar 

  • Haider, F., Aoni, R.A., Ahmed, R., Chew, W.J., Mahdiraji, G.A.: Alphabetic-core assisted microstructure fiber based plasmonic biosensor. Plasmonics 15, 1949–1958 (2020)

    Google Scholar 

  • Haider, F., Mashrafi, M., Aoni, R.A., Haider, R., Hossen, M., Ahmed, T., Mahdiraji, G.A., Ahmed, R.: Multi-analyte detection based on integrated internal and external sensing approach. IEEE Trans. Nanobiosci. 21(1), 29–36 (2021)

    Google Scholar 

  • Hatakeyama, I., Tsuchiya, H.: Fusion splices for single-mode optical fibers. IEEE J. Quantum Electron. 14(8), 614–619 (1978)

    ADS  Google Scholar 

  • Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors. Sens. Actuators, B Chem. 54(1–2), 3–15 (1999)

    Google Scholar 

  • Hoque, A.M.T., Al-tabatabaie, K.F., Ali, M.E., Arshad, A., Mitu, S.S.I., Qureshi, K.K.: U-grooved selectively coated and highly sensitive PCF-SPR sensor for broad range analyte RI detection. IEEE Access 11, 74486–74499 (2023)

    Google Scholar 

  • Islam, M.S., Cordeiro, C.M., Franco, M.A., Sultana, J., Cruz, A.L., Abbott, D.: Terahertz optical fibers. Opt. Express 28(11), 16089–16117 (2020)

    ADS  Google Scholar 

  • Islam, M.S., Cordeiro, C.M., Sultana, J., Aoni, R.A., Feng, S., Ahmed, R., Dorraki, M., Dinovitser, A., Ng, B.W.-H., Abbott, D.: A hi-bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE access 7, 79085–79094 (2019)

    Google Scholar 

  • Islam, M.S., Islam, M.R., Sultana, J., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Exposed-core localized surface plasmon resonance biosensor. JOSA B 36(8), 2306–2311 (2019)

    ADS  Google Scholar 

  • Islam, M.R., Khan, M.M.I., Mehjabin, F., Chowdhury, J.A., Islam, M.: Design of a fabrication friendly and highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Results Phys. 19, 103501 (2020)

    Google Scholar 

  • Islam, M.S., Sultana, J., Aoni, R.A., Habib, M.S., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification. Opt. Lett. 44(5), 1134–1137 (2019)

    ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Rifat, A.A., Ahmed, R., Dinovitser, A., Ng, B.W.-H., Ebendorff-Heidepriem, H., Abbott, D.: Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 26(23), 30347–30361 (2018)

    ADS  Google Scholar 

  • Jabin, M.A., Ahmed, K., Rana, M.J., Paul, B.K., Islam, M., Vigneswaran, D., Uddin, M.S.: Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photon. J. 11(4), 1–10 (2019)

    Google Scholar 

  • Jahan, N., Rahman, M.M., Ahsan, M., Based, M.A., Rana, M.M., Gurusamy, S., Haider, J.: Photonic crystal fiber based biosensor for pseudomonas bacteria detection: a simulation study. IEEE Access 9, 42206–42215 (2021)

    Google Scholar 

  • Klantsataya, E., François, A., Ebendorff-Heidepriem, H., Hoffmann, P., Monro, T.M.: Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing. Sensors 15(10), 25090–25102 (2015)

    ADS  Google Scholar 

  • Kostecki, R., Ebendorff-Heidepriem, H., Davis, C., McAdam, G., Warren-Smith, S.C., Monro, T.M.: Silica exposed-core microstructured optical fibers. Opt. Mater. Exp. 2(11), 1538–1547 (2012)

    ADS  Google Scholar 

  • Kumar, M., Parashar, K.K., Tandi, S.K., Kumar, T., Agarwal, D., Pathak, A., et al.: Fabrication of ag: Tio 2 nanocomposite thin films by sol-gel followed by electron beam physical vapour deposition technique. J. Spectrosc. (2013). https://doi.org/10.1155/2013/491716

    Article  Google Scholar 

  • Lee, B., Roh, S., Park, J.: Current status of micro-and nano-structured optical fiber sensors. Opt. Fiber Technol. 15(3), 209–221 (2009)

    ADS  Google Scholar 

  • Li, T., Fan, Q., Liu, T., Zhu, X., Zhao, J., Li, G.: Detection of breast cancer cells specially and accurately by an electrochemical method. Biosens. Bioelectron. 25(12), 2686–2689 (2010)

    Google Scholar 

  • Li, X., Li, S., Yan, X., Sun, D., Liu, Z., Cheng, T.: High sensitivity photonic crystal fiber refractive index sensor with gold coated externally based on surface plasmon resonance. Micromachines 9(12), 640 (2018)

    Google Scholar 

  • Li, F.-R., Li, Q., Zhou, H.-X., Qi, H., Deng, C.-Y.: Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-rt-pcr. Nanomed. Nanotechnol. Biol. Med. 9(7), 1106–1113 (2013)

    Google Scholar 

  • Liang, X., Liu, A., Zhang, X., Yap, P., Ayi, T., Yoon, H.: Determination of refractive index for single living cell using integrated biochip. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05., IEEE, vol. 2, pp. 1712–1715 (2005)

  • Liu, C., Yang, L., Lu, X., Liu, Q., Wang, F., Lv, J., Sun, T., Mu, H., Chu, P.K.: Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 25(13), 14227–14237 (2017)

    ADS  Google Scholar 

  • Luan, N., Yao, J.: Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire. IEEE Photonics J. 8(1), 1–8 (2015)

    Google Scholar 

  • Mollah, M.A., Islam, M.S.: Novel single hole exposed-suspended core localized surface plasmon resonance sensor. IEEE Sens. J. 21(3), 2813–2820 (2020)

    Google Scholar 

  • Mollah, M.A., Sarker, H., Ahsan, M., Elahi, M.T., Based, M.A., Haider, J., Palani, S.: Designing highly sensitive surface plasmon resonance sensor with dual analyte channels. IEEE Access 9, 139293–139302 (2021)

    Google Scholar 

  • Mollah, M.A., Yousufali, M., Ankan, I.M., Rahman, M.M., Sarker, H., Chakrabarti, K.: Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Bio-Sens. Res. 29, 100344 (2020)

    Google Scholar 

  • Neugebauer, U., Clement, J.H., Bocklitz, T., Krafft, C., Popp, J.: Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J. Biophotonics 3(8–9), 579–587 (2010)

    Google Scholar 

  • Panda, A., Devi, P.P.: Photonic crystal biosensor for refractive index based cancerous cell detection. Opt. Fiber Technol. 54, 102123 (2020)

    Google Scholar 

  • Pang, C., Lee, G.-Y., Kim, T.-I., Kim, S.M., Kim, H.N., Ahn, S.-H., Suh, K.-Y.: A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11(9), 795–801 (2012)

    ADS  Google Scholar 

  • Paul, A.K., Sarkar, A.K., Rahman, A.B.S., Khaleque, A.: Twin core photonic crystal fiber plasmonic refractive index sensor. IEEE Sens. J. 18(14), 5761–5769 (2018)

    ADS  Google Scholar 

  • Pysz, D., Kujawa, I., Stępień, R., Klimczak, M., Filipkowski, A., Franczyk, M., Kociszewski, L., Buźniak, J., Haraśny, K., Buczyński, R.: Stack and draw fabrication of soft glass microstructured fiber optics. Bull. Polish Acad. Sci. Techn. Sci. 62(4), 667–682 (2014)

    Google Scholar 

  • Ramanujam, N.R., Amiri, I., Taya, S.A., Olyaee, S., Udaiyakumar, R., Pasumpon Pandian, A., Joseph Wilson, K., Mahalakshmi, P., Yupapin, P.: Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst. Technol. 25, 189–196 (2019)

    Google Scholar 

  • Ribaut, C., Loyez, M., Larrieu, J.-C., Chevineau, S., Lambert, P., Remmelink, M., Wattiez, R., Caucheteur, C.: Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis. Biosens. Bioelectron. 92, 449–456 (2017)

    Google Scholar 

  • Rifat, A.A., Haider, F., Ahmed, R., Mahdiraji, G.A., Adikan, F.M., Miroshnichenko, A.E.: Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett. 43(4), 891–894 (2018)

    ADS  Google Scholar 

  • Rifat, A.A., Rabiul Hasan, M., Ahmed, R., Miroshnichenko, A.E.: Microstructured optical fiber-based plasmonic sensors. Comput. Photon. Sens. 2019, 203–232 (2019)

    Google Scholar 

  • Sarker, H., Alam, F., Khan, M.R., Mollah, M.A., Hasan, M.L., Rafi, A.S.: Designing highly sensitive exposed core surface plasmon resonance biosensors. Opt. Mater. Express 12(5), 1977–1990 (2022)

    ADS  Google Scholar 

  • Schouten, M., Wolterink, G., Dijkshoorn, A., Kosmas, D., Stramigioli, S., Krijnen, G.: A review of extrusion-based 3d printing for the fabrication of electro-and biomechanical sensors. IEEE Sens. J. 21(11), 12900–12912 (2020)

    ADS  Google Scholar 

  • Sharan, P., Bharadwaj, S., Gudagunti, F.D., Deshmukh, P.: Design and modelling of photonic sensor for cancer cell detection. In: 2014 International Conference on the Impact of E-Technology on US (IMPETUS), IEEE, pp. 20–24 (2014)

  • Sharma, A.K., Jha, R., Gupta, B.: Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7(8), 1118–1129 (2007)

    ADS  Google Scholar 

  • Sharma, P., Sharan, P., Deshmukh, P.: A photonic crystal sensor for analysis and detection of cancer cells. In: 2015 International Conference on Pervasive Computing (ICPC), IEEE, pp. 1–5 (2015)

  • Shuai, B., Xia, L., Liu, D.: Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt. Express 20(23), 25858–25866 (2012)

    ADS  Google Scholar 

  • Siddik, A.B., Hossain, S., Paul, A.K., Rahman, M., Mollah, A.: High sensitivity property of dual-core photonic crystal fiber temperature sensor based on surface plasmon resonance. Sens. Bio-Sens. Res. 29, 100350 (2020)

    Google Scholar 

  • Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A.: Cancer statistics, 2023. CA Cancer J. Clin. 73(1), 17–48 (2023)

    Google Scholar 

  • Sun, D., Ran, Y., Wang, G.: Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber Bragg grating. Sensors 17(11), 2559 (2017)

    ADS  Google Scholar 

  • Thomson, E.: Mit radar research used to treat breast cancer enters phase ii trials. Cambridge, MA, USA, Mitnews (2001)

  • Tsai, C., Huang, S.: Water distribution in cancer and normal cells. Accessed (2012)

  • Tse, M., Tam, H.Y., Fu, L., Thomas, B., Dong, L., Lu, C., Wai, P.K.A.: Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength. IEEE Photon. Technol. Lett. 21(3), 164–166 (2008)

    ADS  Google Scholar 

  • Wang, X.-Z., Wang, Q.: Theoretical analysis of a novel microstructure fiber sensor based on lossy mode resonance. Electronics 8(5), 484 (2019)

    Google Scholar 

  • Wieduwilt, T., Tuniz, A., Linzen, S., Goerke, S., Dellith, J., Hübner, U., Schmidt, M.A.: Ultrathin niobium nanofilms on fiber optical tapers-a new route towards low-loss hybrid plasmonic modes. Sci. Rep. 5(1), 17060 (2015)

    ADS  Google Scholar 

  • Yablon, A.D., Bise, R.T.: Low-loss high-strength microstructured fiber fusion splices using grin fiber lenses. IEEE Photon. Technol. Lett. 17(1), 118–120 (2004)

    ADS  Google Scholar 

  • Yang, X., Lu, Y., Liu, B., Yao, J.: Simulation of lSPR sensor based on exposed-core grapefruit fiber with a silver nanoshell. J. Lightwave Technol. 35(21), 4728–4733 (2017)

    ADS  Google Scholar 

  • Yang, X., Lu, Y., Liu, B., Yao, J.: Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12, 489–496 (2017)

    Google Scholar 

  • Yang, X., Lu, Y., Wang, M., Yao, J.: An exposed-core grapefruit fibers based surface plasmon resonance sensor. Sensors 15(7), 17106–17114 (2015)

    ADS  Google Scholar 

  • Yang, X., Lu, Y., Wang, M., Yao, J.: SPR sensor based on exposed-core grapefruit fiber with bimetallic structure. IEEE Photonics Technol. Lett. 28(6), 649–652 (2015)

    ADS  Google Scholar 

  • Yaroslavsky, A.N., Patel, R., Salomatina, E., Li, C., Lin, C., Al-Arashi, M., Neel, V.: High-contrast mapping of basal cell carcinomas. Opt. Lett. 37(4), 644–646 (2012)

    ADS  Google Scholar 

  • Yasli, A.: Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16, 1605–1612 (2021)

    Google Scholar 

  • Zhao, L., Han, H., Luan, N., Liu, J., Song, L., Hu, Y.: A temperature plasmonic sensor based on a side opening hollow fiber filled with high refractive index sensing medium. Sensors 19(17), 3730 (2019)

    ADS  Google Scholar 

  • Zhelev, T., Strelow, O.: Heat integration in micro-fluidic devices. In: Engineering, Computer Aided Chemical., pp. 1863–1868. Elsevier, UK (2006)

    Google Scholar 

  • Zhou, J., Zheng, Y., Liu, J., Bing, X., Hua, J., Zhang, H.: A paper-based detection method of cancer cells using the photo-thermal effect of nanocomposite. J. Pharm. Biomed. Anal. 117, 333–337 (2016)

    Google Scholar 

Download references

Acknowledgements

This research work was funded by Institutional Fund Projects under Grant No. (IFPIP: 961-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Funding

This research work was funded by Institutional Fund Projects under Grant No. (IFPIP: 961-135-1443).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.A.M, M.S.I., and A.R.; methodology, A.R., M.S.I, M.A.; software, A.R., M.H.P., and M.A.M.; validation, S.A., M.S.I., M.A., M.H.P., I.M.M., and M.A.M.; formal analysis, M.H.P., M.A.M.; investigation, M.A.M.; resources, M.S.I., M.A., and M.A.M.; data curation, M.A., I.M.M.; writing—original draft preparation, A.R., M.H.P. M.A.M.; writing—review and editing, A.R., M.S.I., M.A., and I.M.M..; visualization, S.A., and M.A.M; supervision, M.A.M.; project administration, M.A.M.; funding acquisition, M.S.I., M.A., I.M.M., S.A., All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Md. Aslam Mollah.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Ethical approval is not applicable to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Islam, M.S., Alharbi, M. et al. X-shaped exposed core highly sensitive plasmonic sensor for cancer cell detection. Opt Quant Electron 56, 718 (2024). https://doi.org/10.1007/s11082-024-06392-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06392-w

Keywords

Navigation