Skip to main content
Log in

Exploring quasi-probability Husimi-distributions in nonlinear two trapped-ion qubits: intrinsic decoherence effects

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Husimi phase-space distribution is an efficient tool for studying quantum coherent states as it provides information on quantum-state features. The paper investigates the non-classicality and mixedness dynamics of two dipole trapped qubits beyond Lamb-Dicke regime. We analyze the Husimi distribution non-classicality and Wehrl entropy mixedness, which are substantially impacted by several physical characteristics that involve unitary ion-mode interaction, Lamb-Dicke nonlinearity, dipole two-qubit interaction, and intrinsic decoherence. Our results show that when these physical parameters grow, the phase-space information of the trapped-ion-qubit state becomes more sensitive, resulting in more von-Neumann/Wehrl entropy mixedness. The unitary ion-mode interaction, in particular, intensifies the von-Neumann/Wehrl entropy qubit’s mixedness, and the Husimi distribution coincides with the von-Neumann entropy qubit’s mixedness. Furthermore, the dipole interaction of the qubits considerably impacts and delays the emergence of the maximal von-Neumann/Wehrl entropy qubit’s mixedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Correspondence and requests for materials should be addressed to A.-B. A. Mohamed.

References

  • Anwar, S.J., Ramzan, M., Usman, M., Khan, M.K.: Dynamics of entanglement and quantum Fisher information for N-level atomic system under intrinsic decoherence. Quantum Inf Process 16, 142 (2017)

    ADS  MathSciNet  Google Scholar 

  • Anwar, S.J., Ramzan, M., Usman, M., Khan, M.K.: Thermal and intrinsic decoherence effects on the dynamics of two three-level moving atomic system. Phys. A 549, 124297 (2020)

    MathSciNet  Google Scholar 

  • Armour, A.D., Blencowe, M.P., Schwab, K.C.: Entanglement and Decoherence of a Micromechanical Resonator via Coupling to a Cooper-Pair Box. Phys. Rev. Lett. 88, 148301 (2002)

    ADS  CAS  PubMed  Google Scholar 

  • Azuma, H., Bose, S., Vedral, V.: Entangling capacity of global phases and implications for the Deutsch–Jozsa algorithm. Phys. Rev. A 64, 62308 (2001)

    ADS  Google Scholar 

  • Banerji, A., Singh, R.P., Bandyopadhyay, A.: Entanglement measure using Wigner function: case of generalized vortex state formed by multiphoton subtraction. Opt. Commun. 330, 85 (2014)

    ADS  CAS  Google Scholar 

  • Benabdallah, F., Anouz, K.E., Daoud, M.: Toward the relationship between local quantum Fisher information and local quantum uncertainty in the presence of intrinsic decoherence. Eur. Phys. J. Plus 137, 548 (2022)

    Google Scholar 

  • Benabdallah, F., El Anouz, K., Ur Rahman, A., Daoud, M., El Allati, A., Haddadi, S.: Witnessing Quantum Correlations in a Hybrid Qubit-Qutrit System Under Intrinsic Decoherence. Fortschr. Phys. 71, 2300032 (2023)

    MathSciNet  Google Scholar 

  • Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Oncentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    ADS  CAS  PubMed  Google Scholar 

  • Blockley, C.A., Walls, D.F.: Cooling of a trapped ion in the strong-sideband regime. Phys. Rev. A 47, 2115 (1993)

    ADS  CAS  PubMed  Google Scholar 

  • Blümel, R., Grzesiak, N., Nguyen, N.H., Green, A.M., Li, M., Maksymov, A., Linke, N.M., Nam, Y.: Efficient stabilized two-qubit gates on a trapped-ion quantum computer. Phys. Rev. Lett. 126, 220503 (2021)

    ADS  PubMed  Google Scholar 

  • Botelhoa, L.A.S., Vianna, R.O.: Efficient quantum tomography of two-mode Wigner functions. Eur. Phys. J. D 74, 42 (2020)

    ADS  Google Scholar 

  • Boudreault, C., Eleuch, H., Hilke, M., Mackenzie, R.: Universal quantum computation with symmetric qubit clusters coupled to an environment. Phys. Rev. A 106, 062610 (2022)

    ADS  MathSciNet  CAS  Google Scholar 

  • Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    ADS  CAS  Google Scholar 

  • Briegel, H.-J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    ADS  CAS  Google Scholar 

  • Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    ADS  Google Scholar 

  • Cahill, K.E., Glauber, R.J.: Ordered expansions in boson amplitude operators. Phys. Rev. 177, 1857 (1969)

    ADS  Google Scholar 

  • Campbell, W.C., Hudson, E.R.: Dipole-phonon quantum logic with trapped polar molecular ions. Phys. Rev. Lett. 125, 120501 (2020)

    ADS  CAS  PubMed  Google Scholar 

  • Cheng, X.-H., Arrazola, I., Pedernales, J.S., Lamata, L., Chen, X., Solano, E.: Nonlinear quantum Rabi model in trapped ions. Phys. Rev. A 97, 023624 (2018)

    ADS  CAS  Google Scholar 

  • Cirac, J.I., Zoller, P.: Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74, 4091 (1995)

    ADS  CAS  PubMed  Google Scholar 

  • Cirac, J.I., Blatt, R., Parkins, A.S., Zoller, P.: Quantum collapse and revival in the motion of a single trapped ion. Phys. Rev. A 49, 1202 (1994)

    ADS  CAS  PubMed  Google Scholar 

  • Collins, D.: Qubit-channel metrology with very noisy initial states. Phys. Rev. A 99, 012123 (2019)

    ADS  CAS  Google Scholar 

  • Didier, N., Guillaud, J., Shankar, S., Mirrahimi, M.: Remote entanglement stabilization and concentration by quantum reservoir engineering. Phys. Rev. A 98, 012329 (2018)

    ADS  CAS  Google Scholar 

  • Drmota, P., Main, D., Nadlinger, D.P., Nichol, B.C., Weber, M.A., Ainley, E.M., Agrawal, A., Srinivas, R., Araneda, G., Ballance, C.J., Lucas, D.M.: Robust quantum memory in a trapped-ion quantum network node. Phys. Rev. Lett. 130, 090803 (2023)

    ADS  CAS  PubMed  Google Scholar 

  • Faisal, A.A.: El-Orany: Atomic Wehrl entropy for the Jaynes-Cummings model: explicit form and Bloch sphere radius. J. Mod. Opt. 56, 99–103 (2009)

    Google Scholar 

  • Fakhri, H., Sayyah-Fard, M.: The Jaynes–Cummings model of a two-level atom in a single-mode para-Bose cavity field. Sci. Rep. 11, 22861 (2021)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbani, M., Faghihi, M.J., Safari, H.: Wigner function and entanglement dynamics of a two-atom two-mode nonlinear Jaynes–Cummings model. J. Opt. Soc. Am. B 34, 1893 (2017)

    ADS  Google Scholar 

  • Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.-X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1 (2017)

    ADS  MathSciNet  Google Scholar 

  • Hannegan, J., Siverns, J.D., Quraishi, Q.: Entanglement between a trapped-ion qubit and a 780-nm photon via quantum frequency conversion. Phys. Rev. A 106, 042441 (2022)

    ADS  CAS  Google Scholar 

  • Harder, G., Silberhorn, C., Rehacek, J., Hradil, Z., Motka, L., Stoklasa, B., Sánchez-Soto, L.L.: Local sampling of the wigner function at telecom wavelength with loss-tolerant detection of photon statistics. Phys. Rev. Lett. 116, 133601 (2016)

    ADS  CAS  PubMed  Google Scholar 

  • Harlander, M., Lechner, R., Brownnutt, M., Blatt, R., Hänsel, W.: Trapped-ion antennae for the transmission of quantum information. Nature 471, 200 (2011)

    ADS  CAS  PubMed  Google Scholar 

  • Hessian, H.A., Mohamed, A.-B.A.: Quasi-probability distribution functions for a single trapped ion interacting with a mixed laser field. Laser Phys. 18, 1217 (2008)

    ADS  Google Scholar 

  • Hou, S.-Y., Sheng, Y.-B., Feng, G.-R., Long, G.-L.: Experimental optimal single qubit purification in an NMR quantum information processor. Sci. Rep. 4, 6857 (2015)

    Google Scholar 

  • Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Japan 22, 264 (1940)

    Google Scholar 

  • Joshi, M.K., Hrmo, P., Jarlaud, V., Oehl, F., Thompson, R.C.: Population dynamics in sideband cooling of trapped ions outside the Lamb–Dicke regime. Phys. Rev. A 99, 013423 (2019)

    ADS  CAS  Google Scholar 

  • Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    ADS  CAS  PubMed  Google Scholar 

  • Krumm, F., Vogel, W.: Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion. Phys. Rev. A 97, 043806 (2018)

    ADS  CAS  Google Scholar 

  • Li, L.X., Guo, G.C.: Quantum logic gate operation between different ions in a trap. Phys. Rev. A 60, 696 (1999)

    ADS  CAS  Google Scholar 

  • Liao, Y.-Y., Jian, S.-R., Lee, J.-R.: Effect of intrinsic decoherence on entanglement of three polar molecules with two-dimensional rotation. Eur. Phys. J. D 73, 47 (2019)

    ADS  Google Scholar 

  • Ma, J., Sun, Z., Wang, X., Nori, F.: Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85, 062323 (2012)

    ADS  Google Scholar 

  • Maleki, Y.: Stereographic geometry of coherence and which-path information. Opt. Lett. 44, 5513 (2019)

    ADS  PubMed  Google Scholar 

  • Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  • Mohamed, A.-B., Eleuch, H.: Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: entanglement and non-Gaussanity. Eur. Phys. J. D 69, 191 (2015)

    ADS  Google Scholar 

  • Mohamed, A.-B.A., Eleuch, H., Raymond, C.H.: Ooi: non-locality correlation in two driven qubits inside an open coherent cavity: trace norm distance and maximum bell function. Sci. Rep. 9, 19632 (2019)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed, A.-B.A., Eleuch, H., Raymond, C.H.: Ooi: Quantum coherence and entanglement partitions for two driven quantum dots inside a coherent micro cavity. Phys. Lett. A 383, 125905 (2019)

    MathSciNet  CAS  Google Scholar 

  • Mohamed, A.-B.A., Hessian, H.A., Eleuch, H.: Quantum correlations of two qubits beyond entanglement in two lossy cavities linked by a waveguide. Chaos Solitons Fractals 135, 109773 (2020)

    MathSciNet  Google Scholar 

  • Mohamed, A.-B.A., Rahman, A., Eleuch, H.: Temporal quantum memory and non-locality of two trapped ions under the effect of the intrinsic decoherence: entropic uncertainty. Trace norm nonlocality and entanglement. Symmetry 14, 648 (2022)

    ADS  Google Scholar 

  • Moya-Cessa, H., Knight, P.L.: Series representation of quantum-field quasiprobabilities. Phys. Rev. A 48, 2479 (1993)

    ADS  CAS  PubMed  Google Scholar 

  • Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  • Obada, A.-S., Abdel-Khalek, S.: New features of the atomic Wehrl entropy and its density in multi-quanta two-level system. J. Phys. A Math. Gen. 37, 6573 (2004)

    ADS  MathSciNet  Google Scholar 

  • Obada, A.-S.F., Mohamed, A.-B.A.: Erasing information and purity of a quantum dot via its spontaneous decay. Solid State Commun. 151, 1824 (2011)

    ADS  CAS  Google Scholar 

  • Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A.: The effects of thermal photons on entanglement dynamics for a dispersive Jaynes-Cummings model. Phys. Lett. A 372, 3699 (2008)

    ADS  CAS  Google Scholar 

  • Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A 44, 6023 (1991)

    ADS  CAS  PubMed  Google Scholar 

  • Raussendorf, R., Bermejo-Vega, J., Tyhurst, E., Okay, C., Zurel, M.: Phase-space-simulation method for quantum computation with magic states on qubits. Phys. Rev. A 101, 012350 (2020)

    ADS  CAS  Google Scholar 

  • Retzker, A., Solano, E., Reznik, B.: Tavis-Cummings model and collective multiqubit entanglement in trapped ions. Phys. Rev. A 75, 022312 (2007)

    ADS  Google Scholar 

  • Rundle, R.P., Everitt, M.J.: Overview of the phase space formulation of quantum mechanics with application to quantum technologies. Adv. Quantum Technol. 4, 2100016 (2021)

    Google Scholar 

  • Salazar, S.J.C., Laguna, H.G., Sagar, R.P.: Phase-space quantum distributions and information theory. Phys. Rev. A 107, 042417 (2023)

    ADS  MathSciNet  CAS  Google Scholar 

  • Simeonov, L.S., Vitanov, N.V., Ivanov, P.A.: Compensation of the trap-induced quadrupole interaction in trapped Rydberg ions. Sci. Rep. 9, 7340 (2019)

    ADS  PubMed  PubMed Central  Google Scholar 

  • Siomau, M., Fritzsche, S.: Quantum computing with mixed states. Eur. Phys. J. D 62, pp 449–456 (2011)

  • Solano, E., Milman, P., de Matos Filho, R.L., Zagury, N.: Manipulating motional states by selective vibronic interaction in two trapped ions. Phys. Rev. A 62, 021401 (2000)

    ADS  Google Scholar 

  • Strandberg, I., Lu, Y., Quijandría, F., Johansson, G.: Numerical study of Wigner negativity in one-dimensional steady-state resonance fluorescence. Phys. Rev. A 100, 063808 (2019)

    ADS  CAS  Google Scholar 

  • van Enk, S.J., Kimble, H.J.: On the classical character of control fields in quantum information processing. Quant. Inform. Comput. 2, 1 (2002)

    MathSciNet  Google Scholar 

  • van Mourik, M.W., Martinez, E.A., Gerster, L., Hrmo, P., Monz, T., Schindler, P., Blatt, R.: Coherent rotations of qubits within a surface ion-trap quantum computer. Phys. Rev. A 102, 022611 (2020)

    ADS  Google Scholar 

  • Vieira, V.R., Sacramento, P.D.: Generalized phase-space representatives of spin-J operators in terms of bloch coherent states. Ann. Phys. 242, 188 (1995)

    ADS  MathSciNet  CAS  Google Scholar 

  • Virzi, S., Rebufello, E., Avella, A., Piacentini, F., Gramegna, M., Ruo Berchera, I., Degiovanni, I.P., Genovese, M.: Optimal estimation of entanglement and discord in two-qubit states. Sci. Rep. 9, 3030 (2019)

    ADS  PubMed  PubMed Central  Google Scholar 

  • Vogel, W., de Matos Filho, R.L.: Nonlinear Jaynes-Cummings dynamics of a trapped ion. Phys. Rev. A 52, 4214 (1995)

    ADS  CAS  PubMed  Google Scholar 

  • Wang, X., Miranowicz, A., Liu, Y.-X., Sun, C.P., Nori, F.: Sudden vanishing of spin squeezing under decoherence. Phys. Rev. A 81, 022106 (2010)

    ADS  Google Scholar 

  • Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)

    ADS  MathSciNet  Google Scholar 

  • Wei, L.F., Nori, F.: An efficient single-step scheme for manipulating quantum information of two trapped ions beyond the Lamb-Dicke limit. Phys. Lett. A 320, 131 (2003)

    ADS  CAS  Google Scholar 

  • Wei, L.F., Liu, Y.-X., Nori, F.: Engineering quantum pure states of a trapped cold ion beyond the Lamb-Dicke limit. Phys. Rev. A 70, 063801 (2004)

    ADS  Google Scholar 

  • Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 47, 749 (1932)

    ADS  Google Scholar 

  • Wu, Q., Shi, Y., Zhang, J.: Continuous Raman sideband cooling beyond the Lamb–Dicke regime in a trapped ion chain. Phys. Rev. Res. 5, 023022 (2023)

    CAS  Google Scholar 

  • Xiang, Z.-L., Ashhab, S., You, J.Q., F. Nori: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

  • You, J.Q., Hu, X., Nori, F.: Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes. Phys. Rev. B 72, 144529 (2005)

    ADS  Google Scholar 

  • You, J.Q., Liu, Y.-X., Sun, C.P., Nori, F.: Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit. Phys. Rev. B 75, 104516 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, through the Research Groups Program Grant no. (RGP-1444-0053).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ABAM, LAAE, AYAR prepared all the figures and performed the mathematical calculations. LAAE, FMA wrote the original draft. ABAM and HE reviewed and edited the draft. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. -B. A. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Essa, L.A., AL-Rezami, A.Y., Aldosari, F.M. et al. Exploring quasi-probability Husimi-distributions in nonlinear two trapped-ion qubits: intrinsic decoherence effects. Opt Quant Electron 56, 604 (2024). https://doi.org/10.1007/s11082-024-06284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06284-z

Keywords

Navigation