Skip to main content
Log in

Design of THz photonic crystal fiber based biosensor for detection of brain tissues and behavior characterization with Machine learning approach

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this research, we proposed a Terahertz (THz) refractive index-based Hollow-Core Photonic Crystal Fiber (HC-PCF) biosensor for examining various brain cancerous tissues. Six design variants with cladding segments ranging from 4 to 16 are analyzed using the finite element method (FEM). The biosensor demonstrates high sensitivity (94.9 to 97.46%), minimal Effective Mode Loss (EML) of 0.00246 cm−1with an effective mode area of 2.84 × 10−8 m2 and a power core ranges from 93% to 95.9% for the 16-segment cladding. The second contribution involves applying machine learning (ML), utilizing Autoencoder Augmentation Network (AEAN) for data augmentation and Bayesian Ridge Regression Multioutput Regressor (BRRMOR) for rapid prediction of biosensing parameters. The effectiveness of the ML model is demonstrated with a high r2 score of 0.992 for unknown HC-PCF structures, showcasing computational efficiency compared to Finite Element Method simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The numerical data were created and analyzed in this study, and it is used for Machine Learning. Since it is not published yet, we cannot share the data. Once published, based on request the data can be shared.

References

  • Arif, M., Faizul, H., Kawsar, A., Sayed, A., Azad, M., Abul, K.: Design and optimization of photonic crystal fiber for liquid sensing applications. Photon Sens 6(3), 279–288 (2016)

    Article  ADS  CAS  Google Scholar 

  • Arif, M.F.H., Hossain, M.M., Islam, N., Khaled, S.M.: A nonlinear photonic crystal fiber for liquid sensing application with high birefringence and low confinement loss. Sens Bio Sens Res 22, 8925 (2019)

    Google Scholar 

  • Ayyanar, N., Thavasi Raja, G., Sharma, M.: Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens J 18(17), 7093–7099 (2018)

    Article  ADS  CAS  Google Scholar 

  • Bise, R.T., Trevor, D.: Solgel-derived micro-structured fibers: Fabrication and characterization. Proc Opt Fiber Commun Conf 23, 6–11 (2005)

    Google Scholar 

  • Bulbul, A.A.M., Rahaman, H., Podder, E.: Design and quantitative analysis of low loss and extremely sensitive PCF-based biosensor for cancerous cell detection. Opt Quant Electr 54(2), 123 (2022)

    Article  CAS  Google Scholar 

  • Eid, M.M., Habib, M.A., Anower, M.S., Rashed, A.N.Z.: Highly sensitive nonlinear photonic crystal fiber based sensor for chemical sensing applications. Microsyst Technol 27, 1007–1014 (2021)

    Article  CAS  Google Scholar 

  • Fischer, B.M., Hoffmann, M., Helm, H., Wilk, R., Rutz, F., Kleine-Ostmann, T., Jepsen, P.U.: Terahertz time-domain spectroscopy and imaging of artificial RNA. Opt Express 13(14), 5205–5215 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ghazanfari, A., Li, W., Leu, M.C., Hilmas, G.E.: A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 15, 102–112 (2017)

    Google Scholar 

  • Guo, W.Z., Gui-Yao, H., Lan-Tian, H., Ying, L., Qiu-Ju, L., Yan, Y.: The fabrication of micro-structure fiber with the improved stacking-capillary method. Adv Laser Technol 23, 6344 (2005)

    Google Scholar 

  • Habib, M.A.: A refractive index based micro-structured sensor for blood components detection in terahertz regime. Sens Lett 18(1), 74–82 (2020)

    Article  MathSciNet  Google Scholar 

  • Harmouche, R., Collins, L., Arnold, D., Francis, S., Arbel, T.: Bayesian MS lesion classification modeling regional and local spatial information. Int Conf Pattern Recogn 3, 984–987 (2006)

    Google Scholar 

  • Imane, M., Aoula, E.S., Achouyab, E.H.: Using Bayesian ridge regression to predict the overall equipment effectiveness performance. Int Conf Innov Res Appl Sci Eng Technol 5, 1–4 (2022)

    Google Scholar 

  • Islam, MdSaiful, Sultana, J., Rifat, A.A., Dinovitser, A., Ng, B.-H., Abbott, D.: Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens. J. 18(10), 4073–4080 (2018)

    Article  ADS  CAS  Google Scholar 

  • Islam, M.R., Kabir, M.F., Talha, K.M.A., Islam, M.S.: A novel hollow core terahertz refractometric sensor. Sens Bio Sens Res 25, 566 (2019)

    Google Scholar 

  • Islam, M.S., Cordeiro, C.M., Franco, M.A., Sultana, J., Cruz, A.L., Abbott, D.: Terahertz optical fibers. Opt Exp 28(11), 16089–16117 (2020)

    Article  CAS  Google Scholar 

  • Jepsen, P.U., Moller, U., Merbold, H.: Investigation of aqueous alcohol and sugar solutions with reflection THz time-domain spectroscopy. Opt. Express 15(22), 14717–14737 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Jones, R.T.: Machine learning methods in coherent optical communication systems. Int Ser Monogr Phys 56, 995 (2019)

    Google Scholar 

  • Kumar, P., Kumar, V., Roy, J.S.: Design of quad core photonic crystal fibers with flattened zero dispersion. AEU Int J Electr Commun 98, 265–272 (2019)

    Article  Google Scholar 

  • Kumar, A., Verma, P., Jindal, P.: Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime. Opt Quantum Electr 53, 1–13 (2021)

    Article  Google Scholar 

  • Kumar, A., Verma, P., Jindal, P.: Machine Learning approach to surface plasmon resonance sensor based on MXene coated PCF for Malaria disease detection in RBCs. Optik 274, 170549 (2023)

    Article  ADS  CAS  Google Scholar 

  • Lee, C., Radhakrishnan, R., Chen, C., Li, J., Thillaigovindan, J., Balasubramanian, N.: Design and modeling of a nanomechanical sensor using silicon photonic crystals. J Lightw Technol 26(7), 839–846 (2008)

    Article  ADS  CAS  Google Scholar 

  • Leon, M.J.B.M., Kabir, M.A.: Design of a liquid sensing photonic crystal fiber with high sensitivity, bireferingence & low confinement loss. Sens. Bio Sens. Res. 28, 1–7 (2020)

    Google Scholar 

  • Li, S., Ren, S., Chen, S., Yu, B.: Improvement of fiber bragg grating wavelength demodulation system by cascading generative adversarial network and dense neural network. Appl Sci 12(18), 9031 (2022)

    Article  CAS  Google Scholar 

  • Lin, X., Rivenson, Y., Yardimci, N.T.: All-optical machine learning using diffractive deep neural networks. Science 361(6406), 1004–1008 (2018)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  • Liu, D., Tan, Y., Khoram, E., Yu, Z.: Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5(4), 1365–1369 (2018)

    Article  CAS  Google Scholar 

  • Lu, Y., Wang, M.T., Hao, C.J., Zhao, Z.Q., Yao, J.Q.: Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J. 6(3), 1–7 (2014)

    Google Scholar 

  • Luo, Y., Mengu, D., Yardimci, N.T., Rivenson, Y., Veli, M., Jarrahi, M., Ozcan, A.: Design of task-specific optical systems using broadband diffractive neural networks. Light Sci Appl 18(1), 1–14 (2019)

    Google Scholar 

  • Malek, C., Al-Dossari, M., Awasthi, S.K., Matar, Z.S., Abd El-Gawaad, N.S., Sabra, W., Arafa, H.A.: Employing the defective photonic crystal composed of nano composite superconducting material in detection of cancerous brain tumors biosensor: computational study. Crystals 12, 896 (2022)

    Article  Google Scholar 

  • Markelz, G., Roitberg, A., Heilweil, E.J.: Pulsed THz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem Phys Lett 320(1–2), 42–48 (2000)

    Article  ADS  CAS  Google Scholar 

  • Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., Tornatore, M.: An overview on application of machine learning techniques, optical networks. IEEE Commun Surv Tutor 21(2), 1383–1408 (2018)

    Article  Google Scholar 

  • Nejad, H.E., Mir, A., Farmani, A.: Supersensitive and tunable nano-biosensor for cancer detection. IEEE Sens J 19(13), 4874–4881 (2019)

    Article  ADS  CAS  Google Scholar 

  • Panda, A., Devi, P.P.: Photonic crystal biosensor for refractive index based cancerous cell detection. Opt Fiber Technol 54, 945 (2020)

    Article  Google Scholar 

  • Verma, P., Kumar, A., Jindal, P.: Machine learning approach for SPR based photonic crystal fiber sensor for breast cancer cells detection. IEEE 7th forum on research and technologies for society and industry innovation (RTSI) (2022).

  • Pilozzi, L., Farrelly, F.A., Marcucci, G., Conti, C.: Machine learning inverse problem for topological photonics. Commun Phys 1(57), 8925 (2018)

    Google Scholar 

  • Rahman, A.K., Rahman, B.: Rao, Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron. 82, 64–70 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Sridevi, S., Kanimozhi, T., Ayyanar, N., Sunny Chugh, M., Valliammai, J. Mohanraj.: Deep learning based data augmentation and behavior prediction of photonic crystal fiber temperature sensor. IEEE Sens J 22(7), 6832–6839 (2022)

    Article  ADS  CAS  Google Scholar 

  • Subramanian, S., Rana, S., Gupta, S., Sivakumar, P.B., Velayutham, C.S., Venkatesh, S.: Bayesian nonparametric multiple instance regression. 23rd international conference on pattern recognition, pp 3661–3666 (2016).

  • Sun, D., Ran, Y., Wang, G.: Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber bragg grating. Sensors 17(11), 2559 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Sun, J., Lee, S.J., Wu, L., Sarntinoranont, M., Xie, H.: Refractive index measurement of acute rat brain tissue slices using optical coherence tomography. Opt Express 20(2), 1084–1095 (2021)

    Article  ADS  Google Scholar 

  • Talataisong, W., Ismaeel, R., Sandoghchi, S.R., Rutirawut, T., Ntopley, G., Beresnaand, M., Bambilla, G.: Novel method for manufacturing optical fiber: extrusion and drawing of microstructured polymer optical fbers from a 3D printer. Opt Express 26(24), 962563 (2018)

    Article  Google Scholar 

  • Vijayalakshmi, D., Manimegalai, C.T., Ayyanar, N., Vigneswaran, D., Kalimuthu, K.: Detection of blood glucose with hemoglobin content using compact photonic crystal fiber. IEEE Trans Nano Biosci 20(4), 436–443 (2021)

    Article  Google Scholar 

  • Yadav, S., Lohia, P., Dwivedi, D.K.: Quantitative analysis of highly efficient PCF-based sensor for early detection of breast cancer cells in THz regime. J Opt 41, 96652 (2023)

    Google Scholar 

  • Yang, Y., Yang, Y.: Hybrid prediction method for wind speed combining ensemble empirical mode decomposition and Bayesian ridge regression. IEEE Access 23, 71206–71218 (2020)

    Article  Google Scholar 

  • Yasli, A.: Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16, 1605–1612 (2021)

    Article  CAS  Google Scholar 

  • Zhang, P., Zhang, J., Yang, P., Dai, S., Wang, X., Zhang, W.: Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Opt Fiber Technol 26, 176–179 (2015)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

N. Ayyanar acknowledges SERB SURE, India, for providing financial assistantships through State University Research Excellence (SUR/2022/003424-G).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

K.R.D.; N.A. carried out the sensor designing, simulations, performed the graphical analysis and contributed to the final version of the manuscript. S.P. participated in the supervision and drafted the manuscript. S.S. designed the Machine Learning model and analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. R. Deepa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 145 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, K.R., Padma, S., Sridevi, S. et al. Design of THz photonic crystal fiber based biosensor for detection of brain tissues and behavior characterization with Machine learning approach. Opt Quant Electron 56, 430 (2024). https://doi.org/10.1007/s11082-023-06110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06110-y

Keywords

Navigation