Skip to main content
Log in

Analytical design of wideband dielectric polygonal directional beam antennas

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, using the critical angle theorem and creating in-phase conditions, an inhomogeneous medium is designed to radiate plane wavefront in different directions. Each side of the antenna is considered a flat dielectric lens by considering the regular k-sided structures as directional beam antennas. Finally, a closed-form formula for the dielectric constant of the sides is obtained. In comparison with polygonal DBAs designed based on other methods, the presented DBAs designed have thinner dielectric slabs (d/D). The designed lenses have been simulated in Comsol Multiphysics software that showing good performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Aghanejad, I., Abiri, H., Yahaghi, A.: Design of high-gain lens antenna by gradient-index metamaterials using transformation optics. IEEE Trans. Antennas Propag. 60(9), 4074–4081 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Alçep, M., Tokan, F.: Impedance matching technique with perforated, inhomogeneous layers for broadband dielectric lenses. IEEE Sens. J. 21(18), 20018–20026 (2021)

    Article  ADS  Google Scholar 

  • Barati, H., Fakheri, M.H., Abdolali, A.: Exploiting transformation optics for arbitrary manipulation of antenna radiation pattern. IET Microw. Antennas Propag. 13(9), 1271–1279 (2019)

    Article  Google Scholar 

  • Biswas, S., Mirotznik, M.: High gain, wide-angle QCTO-enabled modified Luneburg lens antenna with broadband anti-reflective layer. Sci. Rep. 10(1), 12646 (2020)

    Article  ADS  Google Scholar 

  • Budhu, J., Rahmat-Samii, Y.: A novel and systematic approach to inhomogeneous dielectric lens design based on curved ray geometrical optics and particle swarm optimization. IEEE Trans. Antennas Propag. 67(6), 3657–3669 (2019)

    Article  ADS  Google Scholar 

  • Del Mastro, M., Mahmoud, A., Potelon, T., Sauleau, R., Quagliaro, G., Grbic, A., Ettorre, M.: Ultra-low-profile continuous transverse stub array for SatCom applications. IEEE Trans. Antennas Propag. 70(6), 4459–4471 (2022)

    Article  ADS  Google Scholar 

  • Erfani, E., Niroo-Jazi, M., Tatu, S.: A high-gain broadband gradient refractive index metasurface lens antenna. IEEE Trans. Antennas Propag. 64(5), 1968–1973 (2016)

    Article  ADS  Google Scholar 

  • Esmaeili, P., Taskhiri, M.M.: Multi resonant slot antenna design to radiate fan-shaped multi-beam radiation pattern with the use of two-dimensional perforated Luneburg lens. Int. J. RF Microw. Comput. Aided Eng. 32(12), e23469 (2022)

    Article  Google Scholar 

  • Garcia-Marin, E., Filipovic, D.S., Masa-Campos, J.L., Sanchez-Olivares, P.: Low-cost lens antenna for 5G multi-beam communication. Microw. Opt. Technol. Lett. 62(11), 3611–3622 (2020)

    Article  Google Scholar 

  • Gaufillet, F., Akmansoy, É.: Design of flat graded index lenses using dielectric graded photonic crystals. Opt. Mater. 47, 555–560 (2015)

    Article  ADS  Google Scholar 

  • Gilarlue, M.M., Badri, S.H., Saghai, H.R., Nourinia, J., Ghobadi, C.: Photonic crystal waveguide intersection design based on Maxwell’s fish-eye lens. Photon. Nanostr. Fundam. Appl. 31, 154–159 (2018)

    Article  ADS  Google Scholar 

  • Khalaj-Amirhosseini, M., Taskhiri, M.-M.: Matched and wideband flat lens antennas using symmetric graded dielectrics. JOSA A 35(1), 73–77 (2018)

    Article  ADS  Google Scholar 

  • Komljenovic, T., Sipus, Z., Daniel, J.-P.: Scanning vehicular lens antennas for satellite communications. In: Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1–4. IEEE (2010)

  • Kuriyama, A., Nagaishi, H., Kuroda, H., Takano, K.: A high efficiency antenna with horn and lens for 77 GHz automotive long range radar. In: 2016 46th European Microwave Conference (EuMC), pp. 1525–1528. IEEE (2016)

  • Li, T., Chen, Z.N.: Compact wideband wide-angle polarization-free metasurface lens antenna array for multibeam base stations. IEEE Trans. Antennas Propag. 68(3), 1378–1388 (2019)

    Article  ADS  Google Scholar 

  • Li, J., et al.: Hybrid dispersion engineering based on chiral metamirror. Laser Photonics Rev. 17(3), 2200777 (2023)

    Article  ADS  Google Scholar 

  • Lin, Q.-W., Wong, H.: A low-profile and wideband lens antenna based on high-refractive-index metasurface. IEEE Trans. Antennas Propag. 66(11), 5764–5772 (2018)

    Article  ADS  Google Scholar 

  • Liu, S.L., Lin, X.Q., Lan, J.Y., He, X.B.: W-band flat lens antenna with compact size and broadband performance. IET Microw. Antennas Propag. 14(10), 1047–1052 (2020)

    Article  Google Scholar 

  • Lu, H., Liu, Z., Liu, Y., Ni, H., Lv, X.: Compact air-filled Luneburg lens antennas based on almost-parallel plate waveguide loaded with equal-sized metallic posts. IEEE Trans. Antennas Propag. 67(11), 6829–6838 (2019)

    Article  ADS  Google Scholar 

  • Menzel, W., Moebius, A.: Antenna concepts for millimeter-wave automotive radar sensors. Proc. IEEE 100(7), 2372–2379 (2012)

    Article  Google Scholar 

  • Munina, I., et al.: A review of 3D printed gradient refractive index lens antennas. IEEE Access (2023)

  • Naghavian, A., Taskhiri, M.M., Rajabi, R.: Flat lens design to rotate a cylindrical beam of a line source to an arbitrary angle. Appl. Opt. 60(28), 8922–8929 (2021)

    Article  ADS  Google Scholar 

  • Nasrollahi, H., Taskhiri, M.M., Keshtkar, A.: Analytical design of inhomogeneous flat lenses for high gain applications in an arbitrary direction. Appl. Opt. 61(28), 8223–8232 (2022)

    Article  ADS  Google Scholar 

  • Paul, L.C., Islam, M.M.: A super wideband directional compact vivaldi antenna for lower 5G and satellite applications. Int. J. Antennas Propag. 2021, 1–12 (2021)

    Article  Google Scholar 

  • Poyanco, J.-M., Pizarro, F., Rajo-Iglesias, E.: 3D-printing for transformation optics in electromagnetic high-frequency lens applications. Materials 13(12), 2700 (2020)

    Article  ADS  Google Scholar 

  • Poyanco, J.-M., Pizarro, F., Rajo-Iglesias, E.: Cost-effective wideband dielectric planar lens antenna for millimeter wave applications. Sci. Rep. 12(1), 4204 (2022)

    Article  ADS  Google Scholar 

  • Quevedo-Teruel, O., Ebrahimpouri, M., Ghasemifard, F.: Lens antennas for 5G communications systems. IEEE Commun. Mag. 56(7), 36–41 (2018)

    Article  Google Scholar 

  • Quevedo-Teruel, O., Liao, Q., Chen, Q., Castillo-Tapia, P., Mesa, F., Zhao, K., Fonseca, N.J.G.: Geodesic lens antennas for 5G and beyond. IEEE Commun. Mag. 60(1), 40–45 (2022)

    Article  Google Scholar 

  • Ramezani, D., Mohammad, M.T., Hadian, E.: Quadrilateral broadband lens antenna to radiate simultaneous or independent four beams. Electron. Lett. 58(23), 863–865 (2022)

    Article  ADS  Google Scholar 

  • Saleem, M.K., Vettikaladi, H., Alkanhal, M.A.S., Himdi, M.: Lens antenna for wide angle beam scanning at 79 GHz for automotive short range radar applications. IEEE Trans. Antennas Propag. 65(4), 2041–2046 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schmiele, M., Varma, V.S., Rockstuhl, C., Lederer, F.: Designing optical elements from isotropic materials by using transformation optics. Phys. Rev. A 81(3), 033837 (2010)

    Article  ADS  Google Scholar 

  • Schoenlinner, B., Xidong, Wu., Ebling, J.P., Eleftheriades, G.V., Rebeiz, G.M.: Wide-scan spherical-lens antennas for automotive radars. IEEE Trans. Microw. Theory Tech. 50(9), 2166–2175 (2002)

    Article  ADS  Google Scholar 

  • Taskhiri, M.M.: Axis-symmetric ellipsoidal lens antenna design with independent E and H radiation pattern beamwidth. Opt. Laser Technol. 140, 107037 (2021a)

    Article  Google Scholar 

  • Taskhiri, M.M.: The focusing lens design in Ku-band using ray inserting method (RIM). IEEE Trans. Antennas Propag. 69(10), 6294–6301 (2021b)

    Article  ADS  Google Scholar 

  • Taskhiri, M.M.: Inhomogeneous lens design to increase the gain of antennas regardless of the specific focal point. JOSA A 40(2), 216–222 (2023)

    Article  ADS  Google Scholar 

  • Taskhiri, M.M., Amirhosseini, M.K.: Rays inserting method (RIM) to design dielectric optical devices. Opt. Commun. 383, 561–565 (2017)

    Article  ADS  Google Scholar 

  • Taskhiri, M.M., Fakhte, S.: Designing a wideband dielectric polygonal directional beam antenna using the ray inserting method. Appl. Opt. 59(28), 8970–8975 (2020)

    Article  ADS  Google Scholar 

  • Taskhiri, M.M., Fakhte, S.: Broadband inhomogeneous lens with conical radiation pattern. Sci. Rep. 13, 12907 (2023). https://doi.org/10.1038/s41598-023-40024-9

    Article  ADS  Google Scholar 

  • Thornton, J., White, A., Long, G.: Multi-beam scanning lens antenna for satellite communications to trains. Channels 4, 5G (2009)

    Google Scholar 

  • Tyc, T., Herzánová, L., Šarbort, M., Bering, K.: Absolute instruments and perfect imaging in geometrical optics. New J. Phys. 13(11), 115004 (2011)

    Article  ADS  MATH  Google Scholar 

  • Wang, C., Jie, Wu., Guo, Y.-X.: A 3-D-printed wideband circularly polarized parallel-plate Luneburg lens antenna. IEEE Trans. Antennas Propag. 68(6), 4944–4949 (2019)

    Article  ADS  Google Scholar 

  • Wang, Xi., Cheng, Y., Dong, Y.: A wideband PCB-stacked air-filled Luneburg lens antenna for 5G millimeter-wave applications. IEEE Antennas Wirel. Propag. Lett. 20(3), 327–331 (2021)

    Article  ADS  Google Scholar 

  • Wu, Q., Jiang, Z.H., Quevedo-Teruel, O., Turpin, J.P., Tang, W., Hao, Y., Werner, D.H.: Transformation optics inspired multibeam lens antennas for broadband directive radiation. IEEE Trans. Antennas Propag. 61(12), 5910–5922 (2013)

    Article  ADS  Google Scholar 

  • Wu, G.B., Zeng, Y.-S., Chan, K.F., Qu, S.-W., Chan, C.H.: High-gain circularly polarized lens antenna for terahertz applications. IEEE Antennas Wirel. Propag. Lett. 18(5), 921–925 (2019)

    Article  ADS  Google Scholar 

  • Youn, Y., Choi, J., Kim, D., Omar, A.A., Choi, J., Chang, S., Yoon, I., et al.: Dome-shaped mmWave lens antenna optimization for wide-angle scanning and scan loss mitigation using geometric optics and multiple scattering. IEEE J. Multiscale Multiphys. Comput. Tech. 7, 142–150 (2022)

    Article  ADS  Google Scholar 

  • Yuan, Y., et al.: Chirality-assisted phase metasurface for circular polarization preservation and independent hologram imaging in microwave region. IEEE Trans. Microw. Theory Tech. (2023)

  • Zeng, Y., Zhang, R.: Millimeter wave MIMO with lens antenna array: a new path division multiplexing paradigm. IEEE Trans. Commun. 64(4), 1557–1571 (2016)

    Article  Google Scholar 

  • Zetterstrom, O., Fonseca, N.J.G., Quevedo-Teruel, O.: Additively manufactured Half–Gutman lens antenna for mobile satellite communications. IEEE Antennas Wirel. Propag. Lett. 22, 759–763 (2022a)

    Article  ADS  Google Scholar 

  • Zetterstrom, O., Fonseca, N.J.G., Quevedo-Teruel, O.: Compact half-Luneburg lens antenna based on a glide-symmetric dielectric structure. IEEE Antennas Wirel. Propag. Lett. 21(11), 2283–2287 (2022b)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HN wrote the main manuscript text under the supervision of AK and MMT.

Corresponding author

Correspondence to Mohammad Mahdi Taskhiri.

Ethics declarations

Conflict of interest

Not applicable.

Consent for publication

The Author hereby consents to publication of the Work in Infrared, Millimeter, and Terahertz Waves journal.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrollahi, H., Keshtkar, A. & Taskhiri, M.M. Analytical design of wideband dielectric polygonal directional beam antennas. Opt Quant Electron 55, 1107 (2023). https://doi.org/10.1007/s11082-023-05400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05400-9

Keywords

Navigation