Skip to main content
Log in

Optical quantum hydrostatic electromagnetic microplates according to non-linear heat frame

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, we study generic density of bilayered \(\phi (\mathcal {J}_{1}),\) \(\phi (\mathcal {J}_{2}),\) \(\phi (\mathcal {J}_{3})\) microbeams with hydrostatic longitudinal \(\epsilon _{i}\) pressure potential in Minkowski space. Then, we obtain extensible microelectromechanical \(\phi ( \mathcal {J}_{1}),\) \(\phi (\mathcal {J}_{2}),\) \(\phi (\mathcal {J}_{3})\) microplates according to non-linear heat frame. Finally, we design optical hydrostatic microelectromechanical \(\phi (\mathcal {J}_{1}),\) \(\phi (\mathcal { J}_{2}),\) \(\phi (\mathcal {J}_{3})\) viscous flux in Minkowski space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availibility

No data was used for the research described in the article.

References

  • Abu-Mulaweh, H.I.: A review of research on laminar mixed convection flow over backward-and forward-facing steps. Int. J. Thermal Sci. 42(9), 897–909 (2003)

    Article  Google Scholar 

  • Abu-Nada, E.: Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int. J. Heat Fluid Flow 29(1), 242–249 (2008)

    Article  Google Scholar 

  • Akbulut, A., Kaplan, M., Tascan, F.: The investigation of exact solutions of nonlinear partial differential equations by using exp method. Optik 132, 382–387 (2017)

    Article  ADS  Google Scholar 

  • Arnold, D.P.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43(11), 3940–3951 (2007)

    Article  ADS  Google Scholar 

  • Bognar, G., Klazly, M., Hriczo, K.: Nanofluid flow past a stretching plate. Processes 8(7), 827 (2020)

    Article  Google Scholar 

  • Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52(1), 789–793 (2011)

    Article  Google Scholar 

  • Eelkema, R., Pollard, M.M., Vicario, J., Katsonis, N., Ramon, B.S., Bastiaansen, C.W., Feringa, B.L.: Nanomotor rotates microscale objects. Nature 440(7081), 163–163 (2006)

    Article  ADS  Google Scholar 

  • Farokhi, H., Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int. J. Eng. Sci. 68, 11–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Garnier, N., Grigoriev, R.O., Schatz, M.F.: Optical manipulation of microscale fluid flow. Phys. Rev. Lett. 91(5), 054501 (2003)

    Article  ADS  Google Scholar 

  • Ghayesh, M.H., Balar, S.: Non-linear parametric vibration and stability ofaxially moving visco-elastic Rayleigh beams. Int. J. Solids Struct. 45, 6451–6467 (2008)

    Article  MATH  Google Scholar 

  • Ghayesh, M.H., Amabili, M., Farokhi, H.: Coupled global dynamics ofanaxially moving viscoelastic beam. Int. J. Non Linear Mech. 51, 54–74 (2013)

    Article  ADS  MATH  Google Scholar 

  • Ghayesh, M.H., Amabili, M., Farokhi, H.: Nonlinear forced vibrations ofamicrobeam based onthe strain gradient elasticity theory. Int. J. Eng. Sci. 63, 52–60 (2013)

    Article  MATH  Google Scholar 

  • Gürbüz, N.E.: The null geometric phase along optical fiber for anholonomic coordinates. Optik 258, 168841 (2022)

    Article  ADS  Google Scholar 

  • Gürbüz, N.E.: The evolution of electric field in pseudo-Galilean 3-space G13. Optik 269, 169818 (2022)

    Article  ADS  Google Scholar 

  • Gürbüz, N.E.: The evolution of an electric field, Hasimoto surfaces and three differential formulas with the new frame in R13. Optik 272, 170217 (2023)

    Article  ADS  Google Scholar 

  • Hilo, A.K., Iborra, A.A., Sultan, M.T.H., Hamid, M.F.A.: Experimental study of nanofluids flow and heat transfer over a backward-facing step channel. Powder Technol. 372, 497–505 (2020)

    Article  Google Scholar 

  • Iverson, B.D., Garimella, S.V.: Recent advances in microscale pumping technologies: a review and evaluation. Microfluid. Nanofluidics 5, 145–174 (2008)

    Article  Google Scholar 

  • Kaplan, M.: Two different systematic techniques to find analytical solutions of the (2+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Chin. J. Phys. 56(5), 2523–2530 (2018)

    Article  MathSciNet  Google Scholar 

  • Ke, L.L., Wang, Y.S., Wang, Z.D.: Thermal effect on free vibration and buckling of size-dependent microbeams. Phys. E Low Dimens. Syst. Nanostruct. 43(7), 1387–1393 (2011)

    Article  ADS  Google Scholar 

  • Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Nonlinear free vibration ofsize-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MATH  Google Scholar 

  • Khairul, M.A.: Elham Doroodchi, Reza Azizian, Behdad Moghtaderi, Advancedapplications of tunable ferrofluids in energy systems and energy harvesters: Acritical review. Energy Convers. Manag. 149, 660–674 (2017)

    Article  Google Scholar 

  • Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Klazly, M., Bognar, G.: Heat transfer enhancement for nanofluid flows over a microscale backward-facing step. Alex. Eng. J. 61(10), 8161–8176 (2022)

    Article  Google Scholar 

  • Körpinar, T., Körpinar, Z., Demirkol, R.C., Yeneroğ lu, M.: Optical quasi flux density of Heisenberg ferromagnetic spin with qHATM approach. Optik 245, 167567 (2021)

  • Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020)

  • Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: New version of optical spherical electric and magnetic flow phase with some fractional solutions in SH32. Optik 243, 167378 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021)

    Article  ADS  Google Scholar 

  • Körpinar, Z., Körpinar, T.: Optical normal antiferromagnetic electromotive microscale with optimistic density. Optik 261, 169019 (2022)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical modeling for electrical ferromagnetic microscale with electroostimistic velocity. Optik 259, 168843 (2022)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical modeling for electromagnetic Heisenberg ferromagnetic microscale in Heisenberg group. Waves Random Complex Media 2, 1–28 (2022)

    Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic complex electromotive microscale with first type Schrödinger frame. Opt. Quantum Electron. 55(6), 505 (2023)

    Article  Google Scholar 

  • Körpinar, T., Körpinar, Z.: New optical geometric recursional electromagnetic ferromagnetic microscale. Int. J. Modern Phys. B 52, 2450092 (2023)

    Article  MATH  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic viscosity model for electromotive microscale with second type nonlinear heat frame. Int. J. Geom. Methods Modern Phys. 21, 2350163 (2023)

    Article  MathSciNet  Google Scholar 

  • Körpinar, Z., Körpinar, T.: New optical recursional spherical ferromagnetic flux for optical sonic microscale. J. Nonlinear Opt. Phys. Mater. 13, 2350051 (2023)

    Article  MATH  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic Schr ödinger electromotive microscale in Minkowski space. Opt. Quantum Electron. 55(8), 681 (2023)

    Article  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical visco microfluidic optimistic hybrid optical electromotive microscale. Int. J. Modern Phys. B 45, 2450159 (2023)

    Article  MATH  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Spherical Heisenberg flux of magnetic Heisenberg optical ferromagnetic model. Int. J. Modern Phys. B 78, 2450079 (2023)

    Article  MATH  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical recursional binormal optical visco Landau-Lifshitz electromagnetic optical density. Commun. Theor. Phys. 75(5), 055003 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Optical phase of recursional hybrid visco ferromagnetic electromagnetic microscale. Phys. Lett. A 462, 128651 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  • Körpinar, T., Sazak, A.: Geometric phase for spherical magnetic particles. Optik 273, 170431 (2023)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Asil, V.: Optical modeling for hybrid visco ferromagnetic electromotive energy flux microscale. Optik 268, 169770 (2022)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Asil, V., Körpinar, Z.: Magnetic flux surfaces by the fractional Heisenberg antiferromagnetic flow of magnetic b- lines in binormal direction in Minkowski space. J. Magn. Magn. Mater. 549, 168952 (2022)

    Article  Google Scholar 

  • Körpinar, T., Ünlütürk, Y., Körpinar, Z.: A different modelling of complex Hasimoto map for pseudo-null curves via Bishop frame. Complex Var. Elliptic Eq. 15, 1–16 (2022)

    Google Scholar 

  • Körpinar, T., Körpinar, Z., Asil, V.: Optical electromotive microscale with first type Schrödinger frame. Optik 276, 170629 (2023)

    Article  ADS  Google Scholar 

  • Körpinar, T., Ünlütürk, Y., Körpinar, Z.: A novel approach to the motion equations of null Cartan curves via the compatible Hasimoto map. Optik 23, 171220 (2023)

    Article  ADS  Google Scholar 

  • Korpinar, T., Korpinar, Z., Ozdemir, H.: Optical quantum longitudinal conformable normalization energy of timelike spherical magnetic fibers. Int. J. Geom. Methods Modern Phys. (2023). https://doi.org/10.1142/S0219887823502006

    Article  MathSciNet  Google Scholar 

  • Körpinar, T., Körpinar, Z., Korkmaz, E.: Geometric Schrödinger microfluidic modeling for spherical ferromagnetic mKdV flux. Int. J. Geom. Methods Modern Phys. 16, 2350180 (2023)

    Article  Google Scholar 

  • Körpinar, T., Demirkol, R.C., Körpinar, Z.: On the new conformable optical ferromagnetic and antiferromagnetic magnetically driven waves. Opt. Quantum Electr. 55(6), 496 (2023)

    Article  Google Scholar 

  • Korpinar, Z., Korpinar, T., Inc, M.: Optical modelling of the space-time fractional Eckhaus equation. Thermal Sci. 27(1), 389–399 (2023)

    Article  Google Scholar 

  • Liang, X., Oldenburg, A.L., Crecea, V., Chaney, E.J., Boppart, S.A.: Optical micro-scale mapping of dynamic biomechanical tissue properties. Opt. Express 16(15), 11052–11065 (2008)

    Article  ADS  Google Scholar 

  • Ma, H.M., Gao, X.L., Reddy, J.N.: Amicrostructure-dependent Timoshenko beam model based onamodifiedcouple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maneschy, C., Miyano, Y., Shimbo, M., Woo, T.: Residual-stress analysis ofanepoxy plate subjected torapid cooling onboth surfaces. Exp. Mech. 26, 306–312 (1986)

    Article  Google Scholar 

  • Maruyama, S.: Molecular Dynamics Method for Microscale Heat Transfer. Advances in numerical heat transfer, pp. 189–226. CRC Press, Boca Raton (2018)

    Google Scholar 

  • McFarland, A.W., Colton, J.S.: Role ofmaterial microstructure inplate stiffness with relevance tomicrocantilever sensors. J. Micromech. Microeng. 15, 1060 (2005)

    Article  ADS  Google Scholar 

  • Newbury, D.E.: Characterization of nanoparticles by microbeam analysis and microscopy. Nanostruct. Mater. 9(1–8), 251–260 (1997)

    Article  Google Scholar 

  • Rühm, A., Kozhevnikov, S.V., Ott, F., Radu, F., Major, J.: Magnetic planar waveguides as combined polarizers and spin-flippers for neutron microbeams. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 708, 83–87 (2013)

    Article  ADS  Google Scholar 

  • Salamat-talab, M., Nateghi, A., Torabi, J.: Static and dynamic analysis ofthird-order shear deformation FGmicro beam based onmodified couple stress theory. Int. J. Mech. Sci. 57, 63–73 (2012)

    Article  Google Scholar 

  • Sinton, D.: Microscale flow visualization. Microfluid. Nanofluidics 1, 2–21 (2004)

    Article  Google Scholar 

  • Sun, H.: A particle swarm optimization and coupled generalized differential quadrature element methods with genetic algorithm for stability analysis of the laminated microsystems. Eng. Comput. 38(Suppl 4), 3251–3268 (2022)

    Article  MathSciNet  Google Scholar 

  • Yufeng, Wang., Qian, Zhang., Lurui, Zhao., EunSok, Kim.: Ferrofluid liqud spring forvibration energy harvesting. Proceedings of the IEEE International Conferenceon Micro Electro Mechanical Systems MEMS, pp. 122–125, (2015)

Download references

Funding

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the planning, execution, or analysis of this study; All authors of this paper have read and approved the final version submitted.

Corresponding author

Correspondence to Zeliha Körpinar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Körpinar, Z. Optical quantum hydrostatic electromagnetic microplates according to non-linear heat frame. Opt Quant Electron 55, 1058 (2023). https://doi.org/10.1007/s11082-023-05331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05331-5

Keywords

Navigation