Skip to main content
Log in

A study of propagation of the ultra-short femtosecond pulses in an optical fiber by using the extended generalized Riccati equation mapping method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, the propagation of the ultra-short femtosecond pulses in an optical fiber is modeled by the Kundu–Eckhaus equation with cubic, quintic nonlinearities, and the Raman effect. The Kundu–Eckhaus equation is a special class of nonlinear Schrödinger equation. To find optical soliton solutions, the extended generalised Riccati equation mapping method is applied. The Kundu–Eckhaus equation is a special class of nonlinear Schrödinger equation. To find optical soliton solutions, the extended generalized Riccati equation mapping method is applied. The generalized Riccati equation mapping method is used in conjunction with the \((G'/G)\)-expansion method, which is known for its high accuracy and ability to construct exact solutions for a variety of nonlinear partial differential equations. The obtained solutions provide an sound explanation of the propagation of ultra-short femtosecond pulses in an optical fibers. The discovered solutions are illustrated graphically through 3D and contour graphs using Matlab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abdullaev, F.K., Gammal, A., Tomio, L., Frederico, T.: Stability of trapped Bose-Einstein condensates. Phys. Rev. A 63(4), 043604 (2001)

    Article  ADS  Google Scholar 

  • Ahmed, K.K., Badra, N.M., Ahmed, H.M., Rabie, W.B.: Soliton solutions and other solutions for Kundu–Eckhaus equation with quintic nonlinearity and raman effect using the improved modified extended Tanh-Function method. Mathematics 10(22), 4203 (2022)

    Article  Google Scholar 

  • Akhmediev, N.N., Eleonskii, V.M., Kulagin, N.E.: Exact first-order solutions of the nonlinear Schrödinger equation. Teoreticheskaya i Matematicheskaya Fizika 72(2), 183–196 (1987)

    MathSciNet  Google Scholar 

  • Alesemi, M., Iqbal, N., Botmart, T.: Novel analysis of the fractional-order system of non-linear partial differential equations with the exponential-decay kernel. Mathematics 10(4), 615 (2022)

    Article  Google Scholar 

  • Biswas, A., Yildirim, Y., Yasar, E., Triki, H., Alshomrani, A.S., Ullah, M., Belic, M.: Optical soliton perturbation with full nonlinearity for Kundu-Eckhaus equation by modified simple equation method. Optik 157, 1376–1380 (2018)

    Article  ADS  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Kara, A.H.: Optical solitons and conservation law in birefringent fibers with Kundu-Eckhaus equation by extended trial function method. Optik 179, 471–478 (2019)

    Article  ADS  Google Scholar 

  • Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and nonlinear wave equations (1982)

  • Eckhaus, W.: The long-time behaviour for perturbed wave-equations and related problems. Trends in applications of pure mathematics to mechanics, 168-194 (1986)

  • El Sheikh, M.M.A., Ahmed, H.M., Arnous, A.H., Rabie, W.B., Biswas, A., Khan, S., Alshomrani, A.S.: Optical solitons with differential group delay for coupled Kundu-Eckhaus equation using extended simplest equation approach. Optik 208, 164051 (2020)

    Article  ADS  Google Scholar 

  • El-Borai, M.M., El-Owaidy, H.M., Ahmed, H.M., Arnous, A.H., Moshokoa, S., Biswas, A., Belic, M.: Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov’s method. Optik 128, 57–62 (2017)

    Article  ADS  Google Scholar 

  • Gatz, S., Herrmann, J.: Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. Opt. Lett. 17(7), 484–486 (1992)

    Article  ADS  Google Scholar 

  • Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 78(3), 448 (1997)

    Article  ADS  Google Scholar 

  • Gonzalez-Gaxiola, O.: The Laplace-Adomian decomposition method applied to the Kundu-Eckhaus equation. arXiv preprint arXiv:1704.07730 (2017)

  • Goyal, A., Gupta, R., Kumar, C.N., Raju, T.S.: Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84(6), 063830 (2011)

    Article  ADS  Google Scholar 

  • Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85(2), 026607 (2012)

    Article  ADS  Google Scholar 

  • Hirota, R.: Bilinearization of soliton equations. J. Phys. Soc. Japan 51(1), 323–331 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  • Hyder, A.A., Soliman, A.H.: An extended Kudryashov method for solving stochastic nonlinear models with generalized conformable derivatives. Commun. Nonlinear Sci. Numer. Simul. 97, 105730 (2021)

    Article  MATH  Google Scholar 

  • Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 109136 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85(6), 066601 (2012)

    Article  ADS  Google Scholar 

  • Kiliç, S. Ş. Ş., Çelik, E.: Complex solutions to the higher-order nonlinear boussinesq type wave equation transform. Ricerche di Matematica, 1-8 (2022)

  • Kumar, D., Manafian, J., Hawlader, F., Ranjbaran, A.: New closed form soliton and other solutions of the Kundu-Eckhaus equation via the extended sinh-Gordon equation expansion method. Optik 160, 159–167 (2018)

    Article  ADS  Google Scholar 

  • Kundu, A.: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25(12), 3433–3438 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60(1), 43–58 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ma, L.Y., Zhang, Y.L., Tang, L., Shen, S.F.: New rational and breather solutions of a higher-order integrable nonlinear Schrödinger equation. Appl. Math. Lett. 122, 107539 (2021)

    Article  MATH  Google Scholar 

  • Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+ 1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 32(2), 2350016 (2023)

    Article  ADS  Google Scholar 

  • Naher, H., Abdullah, F.A.: New traveling wave solutions by the extended generalized riccati equation mapping method of the-dimensional evolution equation. J. Appl. Math. (2012). https://doi.org/10.1155/2012/486458

    Article  MathSciNet  MATH  Google Scholar 

  • Naher, H., Abdullah, F.A.: The modified Benjamin-Bona-Mahony equation via the extended generalized Riccati equation mapping method. Appl. Math. Sci. 6(111), 5495–5512 (2012)

    MathSciNet  MATH  Google Scholar 

  • Naher, H., Abdullah, F.A., Mohyud-Din, S.T.: Extended generalized Riccati equation mapping method for the fifth-order Sawada-Kotera equation. AIP Adv. 3(5), 052104 (2013)

    Article  ADS  Google Scholar 

  • Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T., Fang, Y.: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. ANZIAM J. 25(1), 16–43 (1983)

    MATH  Google Scholar 

  • Pushkarov, D., Tanev, S.: Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third-and fifth-order nonlinearities. Opt. Commun. 124(3–4), 354–364 (1996)

    Article  ADS  Google Scholar 

  • Sarma, A.K.: Solitary wave solutions of higher-order NLSE with Raman and self-steepening effect in a cubic-quintic-septic medium. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3215–3219 (2009)

    Article  ADS  Google Scholar 

  • Shabat, A., Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62 (1972)

    ADS  MathSciNet  Google Scholar 

  • Shaikh, T.S., Baber, M.Z., Ahmed, N., Shahid, N., Akgül, A., De la Sen, M.: On the soliton solutions for the stochastic Konno-Oono system in magnetic field with the presence of noise. Mathematics 11(6), 1472 (2023)

    Article  Google Scholar 

  • Skarka, V., Berezhiani, V.I., Miklaszewski, R.: Spatiotemporal soliton propagation in saturating nonlinear optical media. Phys. Rev. E 56(1), 1080 (1997)

    Article  ADS  Google Scholar 

  • Soto-Crespo, J.M., Pesquera, L.: Analytical approximation of the soliton solutions of the quintic complex Ginzburg-Landau equation. Phys. Rev. E 56(6), 7288 (1997)

    Article  ADS  Google Scholar 

  • TAZGAN, T., CELIK, E., Gülnur, Y.E.L., BULUT, H.: On Survey of the Some Wave Solutions of the Non-Linear Schrödinger Equation (NLSE) in Infinite Water Depth. Gazi Univ. J. Sci. , 1-1 (2023)

  • Triki, H., Sun, Y., Biswas, A., Zhou, Q., Yildirim, Y., Zhong, Y., Alshehri, H.M.: On the existence of chirped algebraic solitary waves in optical fibers governed by Kundu-Eckhaus equation. Results Phys. 34, 105272 (2022)

    Article  Google Scholar 

  • Xu, L., Yin, X., Sa, R.: The (2+ 1)-dimensional nonlinear evolution equation in dusty plasma and its analytical solutions. Mod. Phys. Lett. B 36(11), 2250040 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Yang, J.J., Tian, S.F., Peng, W.Q., Zhang, T.T.: The N-coupled higher-order nonlinear Schrödinger equation: Riemann-Hilbert problem and multi-soliton solutions. Math. Methods Appl. Sci. 43(5), 2458–2472 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yazgan, T., Ilhan, E., Çelik, E., Bulut, H.: On the new hyperbolic wave solutions to Wu-Zhang system models. Opt. Quant. Electron. 54(5), 298 (2022)

    Article  Google Scholar 

  • Yin, X., Liu, Q., Ma, S., Bai, S.: Solitonic interactions for Rossby waves with the influence of Coriolis parameters. Results Phys. 28, 104593 (2021)

    Article  Google Scholar 

  • Yin, H.M., Pan, Q., Chow, K.W.: The Fermi-Pasta-Ulam-Tsingou recurrence for discrete systems: cascading mechanism and machine learning for the Ablowitz-Ladik equation. Commun. Nonlinear Sci. Numer. Simul. 114, 106664 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Yin, X., Liu, Q., Bai, S.: The multiple kink solutions and interaction mechanism with help of the coupled Burgers equation. Chin. J. Phys. 77, 335–349 (2022)

    Article  MathSciNet  Google Scholar 

  • Zayed, E.M.E., Ibrahim, S.H.: Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method. Chin. Phys. Lett. 29(6), 060201 (2012)

    Article  Google Scholar 

  • Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1), 521–531 (2022)

    Article  Google Scholar 

  • Zhao, Y.M.: New exact solutions for a higher-order wave equation of KdV type using the multiple simplest equation method. J. Appl. Math. (2014). https://doi.org/10.1155/2014/848069

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mustafa Inc.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethical approval

The author declares that there is no animal studies in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, Z., Iqbal, M.S., Hussain, S. et al. A study of propagation of the ultra-short femtosecond pulses in an optical fiber by using the extended generalized Riccati equation mapping method. Opt Quant Electron 55, 717 (2023). https://doi.org/10.1007/s11082-023-04934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04934-2

Keywords

Navigation