Skip to main content
Log in

On secrecy performance of mixed α − η − μ and Málaga RF-FSO variable gain relaying channel

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

With the completion of the standardization of fifth-generation (5G) networks, the researchers have begun visioning sixth-generation (6G) networks that are predicted to be human-centric. Hence, similar to 5G networks, besides high data rates, providing secrecy and privacy will be the center of attention by the wireless research community. To support the visions beyond 5G and 6G, in this paper we propose a secure radio frequency (RF)-free space optical (FSO) mixed framework under the attempt of wiretapping by an eavesdropper at the RF hop. We assume the RF links undergo \(\alpha -\eta -\mu\) fading whereas the FSO link exhibits a unified Málaga turbulence model with pointing error. The secrecy performance is evaluated by deducing expressions for three secrecy metrics i.e. average secrecy capacity, secrecy outage probability, and probability of non-zero secrecy capacity in terms of univariate and bivariate Meijer’s G and Fox’s H functions. We further capitalize on these expressions to demonstrate the impacts of fading, atmospheric turbulence, and pointing errors and show a comparison between two detection techniques (i.e. heterodyne detection (HD) and intensity modulation with direct detection (IM/DD)) that clearly reveals better secrecy can be achieved with HD technique relative to the IM/DD method. The inclusion of generalized fading models at the RF and FSO hops offers the unification of several classical scenarios as special cases thereby exhibiting a more generic nature relative to the existing literature. Finally, all the analytical results are corroborated via Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author upon reasonable request.

Code availability

Codes are available from the corresponding author upon reasonable request.

References

  • Abd El-Malek, A.H., Salhab, A.M., Zummo, S.A., Alouini, M.-S.: Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling. IEEE Trans. Wirel. Commun. 15(9), 5904–5918 (2016)

    Google Scholar 

  • Abd El-Malek, A.H., Salhab, A.M., Zummo, S.A., Alouini, M.-S.: Effect of RF interference on the security-reliability tradeoff analysis of multiuser mixed RF/FSO relay networks with power allocation. J. Lightwave Technol. 35(9), 1490–1505 (2017)

    ADS  Google Scholar 

  • Abramowitz, M., Stegun, I.A., et al.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol. 55. National bureau of standards Washington, DC (1972)

  • Alimi, I.A., Monteiro, P.P., Teixeira, A.L.: Analysis of multiuser mixed RF/FSO relay networks for performance improvements in cloud computing-based radio access networks (CC-RANs). Opt. Commun. 402, 653–661 (2017)

    ADS  Google Scholar 

  • Al-Qahtani, F.S., El-Malek, A.H.A., Ansari, I.S., Radaydeh, R.M., Zummo, S.A.: Outage analysis of mixed underlay cognitive RF MIMO and FSO relaying with interference reduction. IEEE Photonics J. 9(2), 1–22 (2017). https://doi.org/10.1109/JPHOT.2017.2665969

    Article  Google Scholar 

  • Amirabadi, M.A., Vakili, V.T.: Performance of a relay-assisted hybrid FSO/RF communication system. Phys. Commun. 35, 100729 (2019)

    Google Scholar 

  • Amirabadi, M.A., Vakili, V.T.: On the performance of a multi-user multi-hop hybrid FSO/RF communication system. Opt. Commun. 444, 172–183 (2019)

    ADS  Google Scholar 

  • Anees, S., Bhatnagar, M.R.: Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system. IET Optoelectron. 9(5), 232–240 (2015)

    Google Scholar 

  • Anees, S., Bhatnagar, M.R.: Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system. J. Opt. Commun. Netw. 7(2), 124–135 (2015)

    Google Scholar 

  • Ansari, I.S., Abdallah, M.M., Alouini, M., Qaraqe, K.A.: A performance study of two hop transmission in mixed underlay RF and FSO fading channels. In: 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp. 388–393 (2014). https://doi.org/10.1109/WCNC.2014.6952039

  • Ansari, I.S., Abdallah, M.M., Alouini, M., Qaraqe, K.A.: Outage analysis of asymmetric RF-FSO systems. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), pp. 1–6 (2016). https://doi.org/10.1109/VTCFall.2016.7881143

  • Ansari, I.S., Abdallah, M.M., Alouini, M., Qaraqe, K.A.: Outage performance analysis of underlay cognitive RF and FSO wireless channels. In: 2014 3rd International Workshop in Optical Wireless Communications (IWOW), pp. 6–10 (2014). https://doi.org/10.1109/IWOW.2014.6950766

  • Ansari, I.S., Alouini, M., Cheng, J.: On the capacity of FSO links under Lognormal and Rician-Lognormal turbulences. In: 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), pp. 1–6 (2014). https://doi.org/10.1109/VTCFall.2014.6966082

  • Ansari, I.S., Alouini, M.: Asymptotic ergodic capacity analysis of composite Lognormal shadowed channels. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015). https://doi.org/10.1109/VTCSpring.2015.7145711

  • Ansari, I.S., Alouini, M.: On the performance analysis of digital communications over Weibull-Gamma channels. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–7 (2015). https://doi.org/10.1109/VTCSpring.2015.7145973

  • Ansari, I.S., Yilmaz, F., Alouini, M.: On the sum of squared \(\eta\)-\(\mu\) random variates with application to the performance of wireless communication systems. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–6 (2013). https://doi.org/10.1109/VTCSpring.2013.6692669

  • Ansari, I.S.: Composite and cascaded generalized-\({K}\) fading channel modeling and their diversity and performance analysis (2010). https://doi.org/10.25781/KAUST-8F80X

  • Ansari, I.S., Yilmaz, F., Alouini, M.-S.: Performance analysis of free-space optical links over Málaga (\({\cal{M} }\)) turbulence channels with pointing errors. IEEE Trans. Wirel. Commun. 15(1), 91–102 (2015)

    Google Scholar 

  • Arya, S., Chung, Y.-H.: Multiuser interference-limited petahertz wireless communications over Málaga fading channels. IEEE Access 8, 137356–137369 (2020)

    Google Scholar 

  • Asgari-Forooshani, A., Aghabozorgi, M., Soleimani-Nasab, E., Khalighi, M.A.: Performance analysis of mixed RF/FSO cooperative systems with wireless power transfer. Phys. Commun. 33, 187–198 (2019)

    Google Scholar 

  • Badarneh, O.S.: Error rate analysis of \({M}\)-ary phase shift keying in \(\alpha -\eta -\mu\) fading channels subject to additive Laplacian noise. IEEE Commun. Lett. 19(7), 1253–1256 (2015)

    Google Scholar 

  • Badarneh, O.S., Aloqlah, M.S.: Performance analysis of digital communication systems over \(\alpha\)-\(\eta\)-\(\mu\) fading channels. IEEE Trans. Veh. Technol. 65(10), 7972–7981 (2015)

    Google Scholar 

  • Badrudduza, A., Islam, S.H., Kundu, M.K., Ansari, I.S.: Secrecy performance of \(\alpha\)- \(\kappa\)- \(\mu\) shadowed fading channel. ICT Express (2021)

  • Badrudduza, A., Sarkar, M., Kundu, M.: Enhancing security in multicasting through correlated Nakagami-\(m\) fading channels with opportunistic relaying. Phys. Commun. 43, 101177 (2020)

    Google Scholar 

  • Badrudduza, A., Ibrahim, M., Islam, S.R., Hossen, M.S., Kundu, M.K., Ansari, I.S., Yu, H.: Security at the physical layer over GG fading and mEGG turbulence induced RF-UOWC mixed system. IEEE Access 9, 18123–18136 (2021)

    Google Scholar 

  • Chen, L., Wang, W.: Multi-diversity combining and selection for relay-assisted mixed RF/FSO system. Opt. Commun. 405, 1–7 (2017)

    ADS  Google Scholar 

  • Dang, S., Amin, O., Shihada, B., Alouini, M.-S.: What should 6G be? Nat. Electron. 3(1), 20–29 (2020)

    Google Scholar 

  • El-Malek, A.H.A., Salhab, A.M., Zummo, S.A., Alouini, M.-S.: Physical layer security enhancement in multiuser mixed RF/FSO relay networks under RF interference. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2017). IEEE

  • Erdogan, E.: On the performance of cognitive underlay RF/FSO communication systems with limited feedback. Opt. Commun. 444, 87–92 (2019)

    ADS  Google Scholar 

  • Erdogan, E.: Joint user and relay selection for relay-aided RF/FSO systems over exponentiated Weibull fading channels. Opt. Commun. 436, 209–215 (2019)

    ADS  Google Scholar 

  • Feng, J., Zhao, X.: Performance analysis of mixed RF/FSO systems with STBC users. Opt. Commun. 381, 244–252 (2016)

    ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  • Han, L., Jiang, H., You, Y., Ghassemlooy, Z.: On the performance of a mixed RF/MIMO FSO variable gain dual-hop transmission system. Opt. Commun. 420, 59–64 (2018)

    ADS  Google Scholar 

  • Hossain, T., Shabab, S., Badrudduza, A.S.M., Kundu, M.K., Ansari, I.S.: On the physical layer security performance over RIS-aided dual-hop RF-UOWC mixed network. IEEE Trans. Veh. Technol. 72(2), 2246–2257 (2023). https://doi.org/10.1109/TVT.2022.3214112

    Article  Google Scholar 

  • Ibrahim, M., Badrudduza, A.S.M., Hossen, M.S., Kundu, M.K., Ansari, I.S.: Enhancing security of TAS/MRC-based mixed RF-UOWC system with induced underwater turbulence effect. IEEE Syst. J. 16(4), 5584–5595 (2022). https://doi.org/10.1109/JSYST.2021.3123515

    Article  ADS  Google Scholar 

  • Ibrahim, M., Badrudduza, A.S.M., Hossen, M.S., Kundu, M.K., Ansari, I.S., Ahmed, I.: On effective secrecy throughput of underlay spectrum sharing \(\alpha -\mu\)/ málaga hybrid model under interference-and-transmit power constraints. IEEE Photonics J. 15(2), 1–13 (2023). https://doi.org/10.1109/JPHOT.2023.3253020

    Article  Google Scholar 

  • Islam, S.H., Badrudduza, A., Islam, S.R., Shahid, F.I., Ansari, I.S., Kundu, M.K., Ghosh, S.K., Hossain, M.B., Hosen, A.S., Cho, G.H.: On secrecy performance of mixed generalized Gamma and Málaga RF-FSO variable gain relaying channel. IEEE Access 8, 104127–104138 (2020)

    Google Scholar 

  • Islam, S.H., Badrudduza, A.S.M., Islam, S.R., Shahid, F.I., Ansari, I.S., Kundu, M.K., Yu, H.: Impact of correlation and pointing error on secure outage performance over arbitrary correlated Nakagami-\(m\) and M-turbulent fading mixed RF-FSO channel. IEEE Photonics J. 13, 1–17 (2021)

    Google Scholar 

  • Jing, Z., Shang-hong, Z., Wei-hu, Z., Ke-fan, C.: Performance analysis for mixed FSO/RF Nakagami-\(m\) and exponentiated Weibull dual-hop airborne systems. Opt. Commun. 392, 294–299 (2017)

    ADS  Google Scholar 

  • Juel, N.H., Badrudduza, A., Islam, S.R., Islam, S.H., Kundu, M.K., Ansari, I.S., Mowla, M.M., Kwak, K.-S.: Secrecy performance analysis of mixed \(\alpha\)- \(\mu\) and exponentiated Weibull RF-FSO cooperative relaying system. IEEE Access 9, 72342–72356 (2021)

    Google Scholar 

  • Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)

    Google Scholar 

  • Lei, H., Dai, Z., Ansari, I.S., Park, K.-H., Pan, G., Alouini, M.-S.: On secrecy performance of mixed RF-FSO systems. IEEE Photonics J. 9(4), 1–14 (2017)

    Google Scholar 

  • Lei, H., Luo, H., Park, K.-H., Ren, Z., Pan, G., Alouini, M.-S.: Secrecy outage analysis of mixed RF-FSO systems with channel imperfection. IEEE Photonics J. 10(3), 1–13 (2018)

    Google Scholar 

  • Lei, H., Luo, H., Park, K.-H., Ansari, I.S., Lei, W., Pan, G., Alouini, M.-S.: On secure mixed RF-FSO systems with TAS and imperfect CSI. IEEE Trans. Commun. 68(7), 4461–4475 (2020)

    Google Scholar 

  • Malik, A., Singh, P.: Free space optics: current applications and future challenges. Int. J. Opt. (2015). https://doi.org/10.1155/2015/945483

    Article  Google Scholar 

  • Mittal, P., Gupta, K.: An integral involving generalized function of two variables. In: Proceedings of the Indian Academy of Sciences-Section A, vol. 75, pp. 117–123. Springer (1972)

  • Moualeu, J.M., da Costa, D.B., Hamouda, W., Dias, U.S., de Souza, R.A.: Physical layer security over \(\alpha\)-\(\kappa\)-\(\mu\) and \(\alpha\)-\(\eta\)-\(\mu\) fading channels. IEEE Trans. Veh. Technol. 68(1), 1025–1029 (2018)

    Google Scholar 

  • Odeyemi, K.O., Owolawi, P.A.: Physical layer security in mixed RF/FSO system under multiple eavesdroppers collusion and non-collusion. Opt. Quantum Electron. 50(7), 1–19 (2018)

    Google Scholar 

  • Odeyemi, K.O., Owolawi, P.A.: On the performance of transmit antenna selection in multiuser asymmetric RF/FSO system under generalized order user scheduling. Optik 197, 163102 (2019)

    ADS  Google Scholar 

  • Odeyemi, K.O., Owolawi, P.A.: Selection combining hybrid FSO/RF systems over generalized induced-fading channels. Opt. Commun. 433, 159–167 (2019)

    ADS  Google Scholar 

  • Odeyemi, K.O., Owolawi, P.A.: Security outage performance of partial relay selection in AF mixed RF/FSO system with outdated channel state information. Trans. Emerg. Telecommun. Technol. 30(7), 3555 (2019)

    Google Scholar 

  • Palliyembil, V., Vellakudiyan, J., Muthuchidamdaranathan, P., Tsiftsis, T.A.: Capacity and outage probability analysis of asymmetric dual-hop RF-FSO communication systems. IET Commun. 12(16), 1979–1983 (2018)

    Google Scholar 

  • Pattanayak, D.R., Dwivedi, V.K., Karwal, V.: Physical layer security of a two way relay based mixed FSO/RF network in the presence of multiple eavesdroppers. Opt. Commun. 463, 125429 (2020)

    Google Scholar 

  • Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I., Romer, R.H.: Integrals and series. American Association of Physics Teachers (1988)

  • Ramirez-Espinosa, P., Moualeu, J.M., da Costa, D.B., Lopez-Martinez, F.J.: The alpha-k-\(\mu\) shadowed fading distribution: statistical characterization and applications. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019). IEEE

  • Saber, M.J., Keshavarz, A.: On secrecy performance of mixed Nakagami-\(m\) and Málaga RF/FSO variable gain relaying system. In: Iranian Conference on Electrical Engineering (ICEE), pp. 354–357 (2018). IEEE

  • Salameh, H.A.B., Mahdawi, L., Musa, A., Tha’er, F.H.: End-to-end performance analysis with decode-and-forward relays in multihop wireless systems over \(\alpha -\eta -\mu\) fading channels. IEEE Syst. J. 14(1), 84–92 (2019)

    ADS  Google Scholar 

  • Sarker, N.A., Badrudduza, A., Kundu, M.K., Ansari, I.S.: Effects of eavesdropper on the performance of mixed \(\{\backslash \text{eta}\}\)-\(\{\backslash \text{ mu }\}\) and dgg cooperative relaying system. arXiv preprint arXiv:2106.06951 (2021)

  • Sarker, N.A., Badrudduza, A., Islam, S.R., Islam, S.H., Ansari, I.S., Kundu, M.K., Samad, M.F., Hossain, M.B., Yu, H.: Secrecy performance analysis of mixed hyper-gamma and gamma-gamma cooperative relaying system. IEEE Access 8, 131273–131285 (2020)

    Google Scholar 

  • Sarker, N.A., Badrudduza, A., Islam, S.R., Islam, S.H., Kundu, M.K., Ansari, I.S., Kwak, K.-S.: On the intercept probability and secure outage analysis of mixed (\(\alpha -\kappa -\mu\))-shadowed and Málaga turbulent models. IEEE Access 9, 133849–133860 (2021)

    Google Scholar 

  • Seo, S., Ko, D.-E., Chung, J.-M.: Combined time bound optimization of control, communication, and data processing for FSO-based 6G UAV aerial networks. ETRI J. 42(5), 700–711 (2020)

    Google Scholar 

  • Sharma, S., Madhukumar, A., Swaminathan, R.: Effect of pointing errors on the performance of hybrid FSO/RF networks. IEEE Access 7, 131418–131434 (2019)

    Google Scholar 

  • Springer, M.D.: The algebra of random variables. Technical report (1979)

  • Tonk, V.K., Upadhya, A., Yadav, P.K., Dwivedi, V.K.: Mixed mud-RF/FSO two way dcode and forward relaying networks in the presence of co-channel interference. Opt. Commun. 464, 125415 (2020)

    Google Scholar 

  • Torabi, M., Effatpanahi, R.: Performance analysis of hybrid RF-FSO systems with amplify-and-forward selection relaying. Opt. Commun. 434, 80–90 (2019)

    ADS  Google Scholar 

  • Trinh, P.V., Thang, T.C., Pham, A.T.: Mixed mmWave RF/FSO relaying systems over generalized fading channels with pointing errors. IEEE Photonics J. 9(1), 1–14 (2016)

    Google Scholar 

  • Upadhya, A., Dwivedi, V.K., Singh, G.: Relay-aided free-space optical communications using \(\alpha\)- \(\mu\) distribution over atmospheric turbulence channels with misalignment errors. Opt. Commun. 416, 117–124 (2018)

    ADS  Google Scholar 

  • Van Nguyen, B., Jung, H., Kim, K.: Physical layer security schemes for full-duplex cooperative systems: state of the art and beyond. IEEE Commun. Mag. 56(11), 131–137 (2018)

    Google Scholar 

  • Vellakudiyan, J., Palliyembil, V., Ansari, I.S., Muthuchidambaranathan, P., Qaraqe, K.A.: Performance analysis of the decode-and-forward relay-based RF-FSO communication system in the presence of pointing errors. IET Signal Process. 13(4), 480–485 (2019)

    Google Scholar 

  • Wang, Y., Wang, P., Liu, X., Cao, T.: On the performance of dual-hop mixed RF/FSO wireless communication system in urban area over aggregated exponentiated Weibull fading channels with pointing errors. Opt. Commun. 410, 609–616 (2018)

    ADS  Google Scholar 

  • Wang, Z., Shi, W., Liu, W.: Performance analysis of mixed RF/FSO system with spatial diversity. Opt. Commun. 443, 230–237 (2019)

    ADS  Google Scholar 

  • Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    MathSciNet  MATH  Google Scholar 

  • Yang, L., Liu, T., Chen, J., Alouini, M.-S.: Physical-layer security for mixed \(\eta -\mu\) and \({\cal{M} }\)-distribution dual-hop RF/FSO systems. IEEE Trans. Veh. Technol. 67(12), 12427–12431 (2018)

    Google Scholar 

  • Yi, X., Shen, C., Yue, P., Wang, Y., Ao, Q.: Performance of decode-and-forward mixed RF/FSO system over \(\kappa\)- \(\mu\) shadowed and exponentiated Weibull fading. Opt. Commun. 439, 103–111 (2019)

    ADS  Google Scholar 

  • Yi, X., Ao, Q., Yue, P., Shen, C., Wang, Y., Zhao, P.: Performance analysis for mixed \(\kappa\)- \(\mu\) shadowed and exponentiated Weibull distributed dual-hop system with multiuser diversity in C-RAN. Opt. Commun. 460, 124926 (2020)

    Google Scholar 

  • Zedini, E., Ansari, I.S., Alouini, M.-S.: Performance analysis of mixed Nakagami-\(m\) and Gamma-Gamma dual-hop FSO transmission systems. IEEE Photonics J. 7(1), 1–20 (2014)

    Google Scholar 

  • Zhang, Y., Wang, X., Zhao, S.-H., Zhao, J., Deng, B.-Y.: On the performance of 2 \(\times\) 2 DF relay mixed RF/FSO airborne system over exponentiated Weibull fading channel. Opt. Commun. 425, 190–195 (2018)

    ADS  Google Scholar 

  • Zhao, J., Zhao, S.-H., Zhao, W.-H., Liu, Y., Li, X.: Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels. Opt. Commun. 405, 244–252 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

No acknowledgement.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The initial concept for this work was conceived by NSM and MKK, while SHI and ASMB assisted with the writing of the manuscript and simulation. ISA concluded the work by proofreading and repairing its flaws. The final version of the manuscript was read and approved by each author.

Corresponding author

Correspondence to Sheikh Habibul Islam.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Proof of ASC

For mathematical simplification, we have considered \(\tilde{\alpha _r}=\tilde{\alpha _v}={\tilde{\alpha }}\). The final expressions of \({\mathcal {S}}_1\), \({\mathcal {S}}_2\), \({\mathcal {S}}_3\), and \({\mathcal {S}}_4\) are given below.

1.1 Calculation of \({\mathcal {S}}_1\)

Using the identities (Prudnikov et al. 1988, Eqs. (8.4.3.1), (8.4.2.5)), (15a) can be given as

$$\begin{aligned} {\mathcal {S}}_1= \int _0^\infty \gamma ^{{\tilde{\alpha }} t_1} G_{1,1}^{1,1}\left[ \gamma \biggl \vert \begin{array}{c} 0 \\ 0 \\ \end{array} \right] G_{0,1}^{1,0}\left[ u_{2}\gamma ^{{\tilde{\alpha }}} \biggl \vert \begin{array}{c} . \\ 0 \\ \end{array} \right] d\gamma . \end{aligned}$$
(23)

Now, applying (Prudnikov et al. 1988, Eqs. (2.24.1.1)) in (23) and performing the integration, we obtain

$$\begin{aligned} {\mathcal {S}}_1=(2 \pi )^{1-{\tilde{\alpha }}}G_{{\tilde{\alpha }},1+{\tilde{\alpha }}}^{1+{\tilde{\alpha }},{\tilde{\alpha }}}\left[ u_{2} \biggl \vert \begin{array}{c} \Delta ({\tilde{\alpha }}, -{\tilde{\alpha }}t_1) \\ 0,\Delta ({\tilde{\alpha }}, -{\tilde{\alpha }}t_1) \\ \end{array} \right] , \end{aligned}$$
(24)

where \(\Delta (a,b)=\frac{b}{a}, \frac{b+1}{a},\ldots , \frac{b+a-1}{a}\).

1.2 Calculation of \({\mathcal {S}}_2\)

We derive \({\mathcal {S}}_2\) by following the similar process as \({\mathcal {S}}_1\) and \({\mathcal {S}}_2\) can be expressed as

$$\begin{aligned} {\mathcal {S}}_2&= \int _0^\infty \gamma ^{{\tilde{\alpha }} {\mathcal {T}}} G_{1,1}^{1,1}\left[ \gamma \biggl \vert \begin{array}{c} 0 \\ 0 \\ \end{array} \right] G_{0,1}^{1,0}\left[ \Im \gamma ^{{\tilde{\alpha }}} \biggl \vert \begin{array}{c} . \\ 0 \\ \end{array} \right] d\gamma \nonumber \\&=(2 \pi )^{1-{\tilde{\alpha }}}G_{{\tilde{\alpha }},1+{\tilde{\alpha }}}^{1+{\tilde{\alpha }},{\tilde{\alpha }}}\left[ \Im \biggl \vert \begin{array}{c} \Delta ({\tilde{\alpha }}, -{\tilde{\alpha }}{\mathcal {T}}) \\ 0,\Delta ({\tilde{\alpha }}, -{\tilde{\alpha }}{\mathcal {T}}) \\ \end{array} \right] , \end{aligned}$$
(25)

where \({\mathcal {T}}=t_1+t_2\) and \(\Im =u_{2}+q_2\).

1.3 Calculation of \({\mathcal {S}}_3\)

Utilizing the identities (Prudnikov et al. 1988, Eqs. (8.4.3.1), (8.4.2.5)) in (15c), \({\mathcal {S}}_3\) can be expressed as

$$\begin{aligned} {\mathcal {S}}_3&= \int _0^\infty \gamma ^{{\tilde{\alpha }} t_1} G_{1,1}^{1,1}\left[ \gamma \biggl \vert \begin{array}{c} 0 \\ 0 \\ \end{array} \right] G_{0,1}^{1,0}\left[ u_{2}\gamma ^{{\tilde{\alpha }}} \biggl \vert \begin{array}{c} . \\ 0 \\ \end{array} \right] G_{r+1,3r+1}^{3r,1}\left[ \frac{F \gamma }{u _r} \biggl \vert \begin{array}{c} 1,l_1 \\ l_2,0 \\ \end{array} \right] d\gamma . \end{aligned}$$
(26)

For deriving the closed form expression of \({\mathcal {S}}_3\), we must integrate (26) within the limit 0 to \(\infty\) that is mathematically intractable. So, for obtaining \({\mathcal {S}}_3\) in closed-form, Meijer’s G function terms are converted into Fox’s H functions utilizing (Prudnikov et al. 1988, Eqs. (8.3.2.21)) as

$$\begin{aligned} {\mathcal {S}}_3&=\int _0^\infty \gamma ^{{\tilde{\alpha }} t_1} H_{1,1}^{1,1}\left[ \gamma \biggl \vert \begin{array}{c} {[}0,1{]}\\ {[}0,1{]} \\ \end{array} \right] H_{0,1}^{1,0}\left[ u_{2}\gamma ^{{\tilde{\alpha }}} \biggl \vert \begin{array}{c} . \\ {[}0,1{]} \\ \end{array} \right] \nonumber \\&\quad \quad \times H_{r+1,3r+1}^{3r,1}\left[ \frac{F \gamma }{u _r} \biggl \vert \begin{array}{c} {[}1,1{]},{[}l_1,1{]} \\ {[}l_2,1{]}, {[}0,1{]} \\ \end{array} \right] d\gamma . \end{aligned}$$
(27)

Again, for mathematical simplification, we assume \(x=\gamma ^{{\tilde{\alpha }}}\). So, (27) can be expressed as

$$\begin{aligned} {\mathcal {S}}_3&=\frac{1}{{\tilde{\alpha }}}\int _0^\infty x^{ {\mathcal {M}}_1-1} H_{0,1}^{1,0}\left[ u_{2}x \biggl \vert \begin{array}{c} . \\ {[}0,1{]} \\ \end{array} \right] H_{1,1}^{1,1}\left[ x^{\frac{1}{{\tilde{\alpha }}}} \biggl \vert \begin{array}{c} {[}0,1{]}\\ {[}0,1{]} \\ \end{array} \right] \nonumber \\&\quad \quad \times H_{r+1,3r+1}^{3r,1}\left[ \frac{F x^{\frac{1}{{\tilde{\alpha }}}}}{u _r} \biggl \vert \begin{array}{c} {[}1,1{]},{[}l_1,1{]} \\ {[}l_2,1{]}, {[}0,1{]} \\ \end{array} \right] dx. \end{aligned}$$
(28)

Now utilizing (Mittal and Gupta 1972, Eq. (2.3)), (Lei et al. 2017, Eq. (3)), the final expression of \({\mathcal {S}}_3\) is derived as

$$\begin{aligned}&{\mathcal {S}}_3=\frac{1}{{\tilde{\alpha }} {u_{2}}^{{\mathcal {M}}_1}}\nonumber \\&\quad \quad \quad \times H_{1,0;1,1;r+1,3r+1}^{1,0;1,1;3r,1}\left[ \begin{array}{c} {[}1-{\mathcal {M}}_1; \frac{1}{{\tilde{\alpha }}} , \frac{1}{{\tilde{\alpha }}}{]} \\ - \\ \end{array} \biggl \vert \begin{array}{c} {[}0,1{]} \\ {[}0,1{]} \\ \end{array} \biggl \vert \begin{array}{c} {[}1,1{]},{[}l_1,1{]} \\ {[}l_2,1{]}, {[}0,1{]} \\ \end{array} \biggl \vert \frac{1}{{u_2}^{\frac{1}{{\tilde{\alpha }}}}}, \frac{F}{u_r {u_2}^{\frac{1}{{\tilde{\alpha }}}}} \right] , \end{aligned}$$
(29)

where \({\mathcal {M}}_1=\frac{1}{{\tilde{\alpha }}}+t_1\), \(H_{m1,n1:m2,n2:m3,q3}^{p1,q1:p2,q2:p3,q3}[.]\) is the extended generalized bivariate Fox’s H function.

1.4 Calculation of \({\mathcal {S}}_4\)

Similar to \({\mathcal {S}}_3\), \({\mathcal {S}}_4\) is obtained as

$$\begin{aligned} {\mathcal {S}}_4&= \int _0^\infty \gamma ^{{\tilde{\alpha }} {\mathcal {T}}} G_{1,1}^{1,1}\left[ \gamma \biggl \vert \begin{array}{c} 0 \\ 0 \\ \end{array} \right] G_{0,1}^{1,0}\left[ \Im \gamma ^{{\tilde{\alpha }}} \biggl \vert \begin{array}{c} . \\ 0 \\ \end{array} \right] G_{r+1,3r+1}^{3r,1}\left[ \frac{F \gamma }{u _r} \biggl \vert \begin{array}{c} 1,l_1 \\ l_2,0 \\ \end{array} \right] d\gamma \nonumber \\&=\int _0^\infty \gamma ^{{\tilde{\alpha }}{\mathcal {T}}} H_{1,1}^{1,1}\left[ \gamma \biggl \vert \begin{array}{c} {[}0,1{]}\\ {[}0,1{]} \\ \end{array} \right] H_{0,1}^{1,0}\left[ \Im \gamma ^{{\tilde{\alpha }}} \biggl \vert \begin{array}{c} . \\ {[}0,1{]} \\ \end{array} \right] \nonumber \\&\quad \; \times H_{r+1,3r+1}^{3r,1}\left[ \frac{F \gamma }{u _r} \biggl \vert \begin{array}{c} {[}1,1{]},{[}l_1,1{]} \\ {[}l_2,1{]}, {[}0,1{]} \\ \end{array} \right] d\gamma \nonumber \\&=\frac{1}{{\tilde{\alpha }}}\int _0^\infty x^{ {\mathcal {M}}_2-1} H_{0,1}^{1,0}\left[ \Im x \biggl \vert \begin{array}{c} . \\ {[}0,1{]} \\ \end{array} \right] H_{1,1}^{1,1}\left[ x^{\frac{1}{{\tilde{\alpha }}}} \biggl \vert \begin{array}{c} {[}0,1{]}\\ {[}0,1{]} \\ \end{array} \right] \nonumber \\&\quad \; \times H_{r+1,3r+1}^{3r,1}\left[ \frac{F x^{\frac{1}{{\tilde{\alpha }}}}}{u _r} \biggl \vert \begin{array}{c} {[}1,1{]},{[}l_1,1{]} \\ {[}l_2,1{]}, {[}0,1{]} \\ \end{array} \right] dx \nonumber \\&=\frac{1}{{\tilde{\alpha }} {\Im }^{{\mathcal {M}}_2}} H_{1,0;1,1;r+1,3r+1}^{1,0;1,1;3r,1}\left[ \begin{array}{c} {[}1-{\mathcal {M}}_2; \frac{1}{{\tilde{\alpha }}} , \frac{1}{{\tilde{\alpha }}}{]} \\ - \\ \end{array} \biggl \vert \begin{array}{c} {[}0,1{]} \\ {[}0,1{]} \\ \end{array} \biggl \vert \begin{array}{c} {[}1,1{]},{[}l_1,1{]} \\ {[}l_2,1{]}, {[}0,1{]} \\ \end{array} \biggl \vert \biggl \vert \frac{1}{{\Im }^{\frac{1}{{\tilde{\alpha }}}}}, \frac{F}{u_r {\Im }^{\frac{1}{{\tilde{\alpha }}}}} \right] , \end{aligned}$$
(30)

where \({\mathcal {M}}_2=\frac{1}{{\tilde{\alpha }}}+{\mathcal {T}}\).

B Proof of SOP

Plugging (8) and (11) into (17) leads to

$$\begin{aligned}&P_{out}^L(R_s)=1-\sum _{N_1=0}^{\infty } \sum _{N_2=0}^{\infty }\sum _{t_1=0 }^{W_1-1}u_{4} q_2 \theta ^{\tilde{\alpha _r} t_1}\int _0^\infty e^{-(u_{2}\theta \gamma ^{\tilde{\alpha _r}}+q_2\gamma ^{\tilde{\alpha _v}})}\\&\quad \quad \quad \quad \quad \quad \; \times {\gamma }^{q_3+\tilde{\alpha _r}t_1} \biggl (1-\sigma \sum _{{\tilde{m}}_d=1}^{\beta _d } c_d G_{r+1,3r+1}^{3r,1}\left[ \frac{F }{u _r}(\theta \gamma ) \biggl \vert \begin{array}{c} 1,l_1 \\ l_2,0 \\ \end{array} \right] \biggl )d\gamma . \end{aligned}$$

Here, for mathematical tractability, we consider \(\tilde{\alpha _r}=\tilde{\alpha _v}={\tilde{\alpha }}\).

1.1 Calculation of \({\mathcal {H}}_{1}\)

Using (Gradshteyn and Ryzhik 2014, Eq. (3.326.2)), \({\mathcal {H}}_{1}\) is expressed as

$$\begin{aligned} {\mathcal {H}}_{1}&=\int _0^{\infty }{\gamma }^{q_3+{\tilde{\alpha }}t_1}e^{-\kappa \gamma ^{{\tilde{\alpha }}}}d\gamma ={\frac{\Gamma ({\mathcal {Z}}_1)}{ {\tilde{\alpha }}{\kappa }^{{\mathcal {Z}}_1}}}, \end{aligned}$$
(31)

where \({\mathcal {Z}}_1=\frac{q_3+\tilde{\alpha _r}t_1+1}{{\tilde{\alpha }}}\) and \(\kappa =u_{2}\theta +q_2\).

1.2 Calculation of \({\mathcal {H}}_{2}\)

\({\mathcal {H}}_{2}\) in (18) is given as

$$\begin{aligned} {\mathcal {H}}_{2}&=\int _0^{\infty } {\gamma }^{q_3+{\tilde{\alpha }}t_1} e^{-\kappa \gamma ^{{\tilde{\alpha }}}} G_{r+1,3r+1}^{3r,1}\left[ \frac{F }{u _r}(\theta \gamma ) \biggl \vert \begin{array}{c} 1,l_1 \\ l_2,0 \\ \end{array} \right] d\gamma . \end{aligned}$$
(32)

Letting \(I=\gamma ^{{\tilde{\alpha }}}\) and utilizing (Prudnikov et al. 1988, Eqs. (8.4.3.1) and (2.24.1.1)), \({\mathcal {H}}_{2}\) can be expressed as

$$\begin{aligned}&{\mathcal {H}}_{2} ={\frac{1}{{\tilde{\alpha }}}} \int _0^{\infty } I^{{\mathcal {Z}}_1-1} e^{-\kappa I} G_{r+1,3r+1}^{3r,1}\left[ \frac{F\theta }{u _r}I^{\frac{1}{{\tilde{\alpha }}}}\biggl \vert \begin{array}{c} 1,l_1 \\ l_2,0 \\ \end{array} \right] dI \nonumber \\&\quad \;\; ={\frac{(2\pi )^{(1-{\tilde{\alpha }})r}}{{\kappa }^{{\mathcal {Z}}_1}{\tilde{\alpha }}^{1-{\mathcal {Z}}_2}} } G_{{\tilde{\alpha }}r+{\tilde{\alpha }}+1,3{\tilde{\alpha }}r+{\tilde{\alpha }}}^{3{\tilde{\alpha }}r,{\tilde{\alpha }}+1}\left[ \frac{(F\theta )^{{\tilde{\alpha }} } }{{u_r}^{{\tilde{\alpha }}} \kappa {{\tilde{\alpha }}}^{2{\tilde{\alpha }}r}}\biggl \vert \begin{array}{c} x_1, 1-{\mathcal {Z}}_1,x_2 \\ x_3,0 \\ \end{array} \right] , \end{aligned}$$
(33)

where \({\mathcal {Z}}_2=\Delta (r,\varepsilon ^2)+ \Delta (r, \alpha _d)+ \Delta (r, {\tilde{m}}_d)-\Delta (r,\varepsilon ^2+1)-r\), \(x_1=\Delta ({\tilde{\alpha }},1)\), \(x_2=\Delta ({\tilde{\alpha }},l_1)\), and \(x_3=\Delta ({\tilde{\alpha }},l_2)\).

At higher SNR, asymptotic analysis can be expressed by inverting the Meijer’s G function in (34) via utilizing (Springer 1979, Eq. (6.2.2)). For simplification we assume \({\tilde{\alpha }}=1\) and using (Ansari et al. 2015, Eq. 41), the \({\mathcal {H}}_{2}\) term of the lower bound of the SOP (asymptotic) is expressed as

$$\begin{aligned} {\mathcal {H}}_{2}^{\infty }&= \frac{1}{{\kappa }^{{\mathcal {Z}}_1}} \sum _{k=1}^{3r} {\left( \frac{{u_r}\kappa }{F \theta } \right) }^{L_{1,k}-1} \frac{\Pi _{l=1,l\ne k}^{3r}\Gamma (L_{1,k}-V_{1,l}) \Gamma (1-L_{1,k}) \Gamma (1+{\mathcal {Z}}_1-L_{1,k})}{\Gamma (2-L_{1,k}) \Gamma _{l=3}^{r+2} (L_{1,k}-L_{2,l})}. \end{aligned}$$
(34)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandira, N.S., Kundu, M.K., Islam, S.H. et al. On secrecy performance of mixed α − η − μ and Málaga RF-FSO variable gain relaying channel. Opt Quant Electron 55, 650 (2023). https://doi.org/10.1007/s11082-023-04913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04913-7

Keywords

Navigation