Skip to main content
Log in

Focused beam self-cleaning during laser filamentation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The beam self-cleaning phenomenon is theoretically predicted by the two-dimensional nonlinear Schrödinger equation, which describes self-focusing, and is observed in the case of femtosecond laser filamentation in the collimated regime of propagation. However, the impact of external focusing on the self-cleaning has not been investigated so far. In this paper we systematically study this impact in a wide range of focusing conditions. We show that the energy range, in which self-cleaning can be observed, shrinks monotonically with the numerical aperture growth at some point vanishing at all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Due to confidentiality agreements between authors, data and/or its analysis during the current study is available from the corresponding author [D. V. Pushkarev via email: d-push@yandex.ru] on reasonable request to bona fide researchers.

References

  • Braun, A., Korn, G., Liu, X., Du, D., Squier, J., Mourou, G.: Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20(1), 73–75 (1995)

    Article  ADS  Google Scholar 

  • Chin, S.L., Petit, S., Liu, W., Iwasaki, A., Nadeau, M.-C., Kandidov, V.P., Kosareva, O.G., Andrianov, K.Y.: Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air. Opt. Commun. 210(3–6), 329–341 (2002)

    Article  ADS  Google Scholar 

  • Ciao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13(15), 479–482 (1991)

    ADS  Google Scholar 

  • Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)

    Article  ADS  Google Scholar 

  • Couairon, A., Biejert, J., Hauri, C.P., Kornelis, W., Helbing, F.W., Keller, U., Mysyrowicz, A.: Self-compression of ultra-short laser pulses down to one optical cycle by filamentation. J. Mod. Opt. 53(1–2), 75–85 (2006)

    Article  ADS  MATH  Google Scholar 

  • Geints, Y.E., Mokrousova, D.V., Pushkarev, D.V., Rizaev, G.E., Seleznev, L.V., Geints, I.Y., Ionin, A.A., Zemlyanov, A.A.: Energy limit for linear-to-nonlinear femtosecond laser pulse focusing in air. Opt. Laser Technol. 143, 107377 (2021)

    Article  Google Scholar 

  • Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Seleznev, L.V., Sinitsyn, D.V.: Multiple filamentation of intense femtosecond laser pulses in air. JETP Lett. 90(6), 423–427 (2009)

    Article  ADS  Google Scholar 

  • ISO Standard No. 11146-1: Lasers and laser-related equipment—test methods for laser beam widths, divergence angles and beam propagation ratios—part 1: stigmatic and simple astigmatic beams (2021). https://www.iso.org/standard/77769.html

  • Kandidov, V.P., Shlenov, S.A., Kosareva, O.G.: Filamentation of high-power femtosecond laser radiation. Quantum Electron. 39(3), 205–228 (2009)

    Article  ADS  Google Scholar 

  • Kosareva, O.G., Panov, N.A., Uryupina, D.S., Kurilova, M.V., Mazhorova, A.V., Savel’ev, A.B., Volkov, R.V., Kandidov, V.P., Chin, S.L.: Optimization of a femtosecond pulse self-compression region along a filament in air. Appl. Phys. B 91(1), 35–43 (2008)

    Article  ADS  Google Scholar 

  • Kurilova, M.V., Uryupina, D.S., Mazhorova, A.V., Gorgutsa, S.R., Volkov, R.V., Kosareva, O.G., Savel’ev, A.B.: Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium. Opt. Spectrosc. 107(3), 429–434 (2009)

    Article  ADS  Google Scholar 

  • Landman, M.J., Papanicolaou, G.C., Sulem, C., Wang, X.P.: Stability of isotropic singularities for the nonlinear Schrödinger equation. Physica D 47(3), 393–415 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Liu, W., Chin, S.L.: Understanding the beam self-cleaning behavior of ultrashort laser pulse filamentation. Sci. China Ser. E Technol. Sci. 50(4), 413–421 (2007a)

    Article  ADS  MATH  Google Scholar 

  • Liu, W., Chin, S.L.: Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation. Phys. Rev. A 76, 013826 (2007b)

    Article  ADS  Google Scholar 

  • Liu, W., Gravel, J.-F., Théberge, F., Becker, A., Chin, S.L.: Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air. Appl. Phys. B 80(7), 857–860 (2005)

    Article  ADS  Google Scholar 

  • Milchberg, H.M., Chen, Y.-H., Cheng, Y.-H., Jhajj, N., Palastro, J.P., Rosenthal, E.W., Varma, S., Wahlstrand, J.K., Zahedpour, S.: The extreme nonlinear optics of gases and femtosecond optical filamentation. Phys. Plasmas 21, 100901 (2014)

    Article  ADS  Google Scholar 

  • Milián, C., Jukna, V., Couairon, A., Houard, A., Forestier, B., Carbonnel, J., Liu, Y., Prade, B., Mysyrowicz, A.: Laser beam self-symmetrization in air in the multifilamentation regime. J. Phys. B At. Mol. Opt. Phys. 48(9), 094013 (2015)

    Article  ADS  Google Scholar 

  • Moll, K.D., Gaeta, A.L., Fibich, G.: Self-similar optical wave collapse: observation of the Townes profile. Phys. Rev. Lett. 90, 203902 (2003)

    Article  ADS  Google Scholar 

  • Prade, B., Franco, M., Mysyrowicz, A., Couairon, A., Buersing, H., Eberle, B., Krenz, M., Seiffer, D., Vasseur, O.: Spatial mode cleaning by femtosecond filamentation in air. Opt. Lett. 31(17), 2601–2603 (2006)

    Article  ADS  Google Scholar 

  • Qi, P., Qian, W., Guo, L., Xu, J., Zhang, N., Wang, Y., Zhang, Z., Lin, L., Sun, C., Zhu, L., Liu, W.: Sensing with femtosecond laser filamentation. Sensors 22(18), 7076 (2022)

    Article  ADS  Google Scholar 

  • Rainio, O.: Different coefficients for studying dependence. Sankhya B 84(2), 895–914 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Reyes, D., Baudelet, M., Richardson, M., Rostami Fairchild, S.: Transition from linear-to nonlinear-focusing regime of laser filament plasma dynamics. J. Appl. Phys. 124(5), 053103 (2018)

    Article  ADS  Google Scholar 

  • Théberge, F., Aközbek, N., Liu, W., Becker, A., Chin, S.L.: Tunable ultrashort laser pulses generated through filamentation in gases. Phys. Rev. Lett. 97(2), 023904 (2006a)

    Article  ADS  Google Scholar 

  • Théberge, F., Liu, W., Simard, P.T., Becker, A., Chin, S.L.: Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing. Phys. Rev. E 74(3), 036406 (2006b)

    Article  ADS  Google Scholar 

  • Théberge, F., Châteauneuf, M., Ross, V., Mathieu, P., Dubois, J.: Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air. Opt. Lett. 33(21), 2515–2517 (2008)

    Article  ADS  Google Scholar 

  • Uryupina, D., Kurilova, M., Mazhorova, A., Panov, N., Volkov, R., Gorgutsa, S., Kosareva, O., Savel’ev, A., Chin, S.L.: Few-cycle optical pulse production from collimated femtosecond laser beam filamentation. J. Opt. Soc. Am. B 27(4), 667–674 (2010)

    Article  ADS  Google Scholar 

  • Zvorykin, V.D., Ionin, A.A., Levchenko, A.O., Mesyats, G.A., Seleznev, L.V., Sinitsyn, D.V., Smetanin, I.V., Sunchugasheva, E.A., Ustinovskii, N.N., Shutov, A.V.: Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti: sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control. Quantum Electron. 43(4), 339–346 (2013)

    Article  ADS  Google Scholar 

  • Zvorykin, V.D., Ionin, A.A., Levchenko, A.O., Seleznev, L.V., Sinitsyn, D.V., Smetanin, I.V., Ustinovskii, N.N., Shutov, A.V.: Extended plasma channels created by UV laser in air and their application to control electric discharges. Plasma Phys. Rep. 41, 112–146 (2015)

    Article  ADS  Google Scholar 

  • Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and Formulae. CRC Press, London (2000)

    MATH  Google Scholar 

Download references

Funding

The work is supported by Russian Science Foundation (Grant 21-12-00109).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in experiments and data processing. D. V. P., G. E. R. and L. V. S. have written the main manuscript. All authors contributed to the revision.

Corresponding author

Correspondence to Dmitrii V. Pushkarev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushkarev, D.V., Rizaev, G.E., Mokrousova, D.V. et al. Focused beam self-cleaning during laser filamentation. Opt Quant Electron 55, 577 (2023). https://doi.org/10.1007/s11082-023-04861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04861-2

Keywords

Navigation