Skip to main content
Log in

Acoustically induced forbidden electromagnetic band gaps

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Lamb wave’s perturbation effect on electromagnetic modes propagating in Y − X lithium niobate slab is theoretically investigated. Rayleigh Lamb dispersion curves are estimated to investigate the behaviour of Lamb waves in micrometer order thick slab. Utilizing the information obtained from dispersion curves, acoustic displacement patterns and strain generated along the plate are evaluated. The modification caused to the refractive index of lithium niobate due to Lamb wave induced strain with photoelastic effect is determined. Further, the features of acoustically modified refractive index are examined using the transfer matrix method. It is found that an acoustically modified refractive index offers forbidden electromagnetic band gaps that can be adjusted by tuning the frequency of Lamb waves and by changing the incidence angle of electromagnetic waves. Hence proposed structure is used as a dynamically tunable photonic crystal for various applications like optical filters and optical switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Andrushchak, A.S., Mytsyk, B.G., Laba, H.P., Yurkevych, O.V., Solskii, I.M., Kityk, A.V., Sahraoui, B.: Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature. J. Appl. Phys. 106(7), 073510-6, 1–6 (2009)

  • Axente, E., Ristoscu, C., Bigi, A., Sima, F., Mihailescu, I.N.: Combinatorial laser synthesis of biomaterial thin Films: selection and processing for medical applications Advances in the Application of Lasers in Materials Science.  274 309–338 (2018)

  • Bhartiya, G., Jalal, A.S.: Forgery detection using feature-clustering in recompressed JPEG images. Multimed. Tools Appl. 76, 20799–20814 (2017)

    Article  Google Scholar 

  • Cai, J., Ishikawa, Y., Wada, K.: Strain induced bandgap and refractive index variation of silicon. Optics Express. 21(6), 7162–70 (2013)

    Article  ADS  Google Scholar 

  • Chen, Z., Segev, M.: Highlighting photonics: looking into the next decade. ELight 1(1), 1–12 (2021)

    Article  Google Scholar 

  • Chen, P., Wang, C., Wei, D., Hu, Y., Xu, X., Li, J., & Zhang, Y. (2021). Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light: Sci. Appl. 10(1): 1-7

  • Cowan, B.M.: Three-dimensional dielectric photonic crystal structures for laser-driven acceleration. Phys. Rev. Spec. Top. - Accel Beams 11, 1–9 (2008)

    Article  Google Scholar 

  • Fu, Q., Zhu, H., Ge, J.: Electrically tunable liquid photonic crystals with large dielectric contrast and highly saturated structural colors. Adv. Funct. Mater. 28, 1–9 (2018)

    Article  Google Scholar 

  • Ghasemi, F., Entezar, S.R., Razi, S.: Terahertz tunable photonic crystal optical filter containing graphene and nonlinear electro-optic polymer. Laser Phys. 29, 056201, 1–8 (2019)

  • Granpayeh, A., Habibiyan, H., Parvin, P.: Photonic crystal directional coupler for all-optical switching, tunable multi/demultiplexing and beam splitting applications. J. Mod. Opt 66, 359–366 (2019)

    Article  ADS  Google Scholar 

  • Guo, X., Luo, Y.: Hybrid NOMA/OFDMA visible light communication system with coordinated multiple point transmission. Optics Express. 30(26), 47404–20 (2022)

    Article  ADS  Google Scholar 

  • Gupta, S., Gupta, P., Verma, V.S.: Study on anatomical and functional medical image registration methods. Neurocomputing 452, 534–48 (2021)

    Article  Google Scholar 

  • Gur, D., Palmer, B.A., Leshem, B., Oron, D., Fratzl, P., Weiner, S., Addadi, L.: The mechanism of color change in the neon tetra fish: a light-induced tunable photonic crystal array. Angewandte Chemie Int. Ed. 54(42), 12426–30 (2015)

    Article  Google Scholar 

  • He, C., Chen, X.L., Lu, M.H., Li, X.F., Wan, W.W., Qian, X.S., Yin, R.C., Chen, Y.F.: Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal. Appl. Phys. Lett 96, 111111, 1–3 (2010)

  • Hosseinzadeh Sani, M., Ghanbari, A., Saghaei, H.: An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt. Quantum Electron 52, 295, 1–15 (2020)

  • Inoue, K., Ohtaka, K.: Photonic Crystals vol 94, ed K Inoue and K Ohtaka (Berlin, Heidelberg: Springer Berlin Heidelberg) (2004)

  • Iwasaki, Y., Tsuruta, K., Ishikawa: A 2016 Rectification of Lamb wave propagation in thin plates with piezo-dielectric periodic structures Jpn. J. Appl. Phys.550–4

  • Javidi, B., Carnicer, A., Yamaguchi, M., Nomura, T., Pérez-Cabré, E., Millán, M.S., Nishchal, N.K., Torroba, R., Barrera, J.F., He, W., Peng, X.: Roadmap on optical security. J. Optics 18(8), 1–39 (2016)

  • Ji, X., Yao, X., Gan, Y., Mohanty, A., Tadayon, M.A., Hendon, C.P., Lipson, M.: On-chip tunable photonic delay line. APL Photonics. 4(9), 1–7 (2019)

  • Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  • Johar, A.K., Sharma, G.K., Kumar, T.B., Varma, T., Periasamy, C., Agarwal, A., Boolchandani, D.: Optimization of a flexible film bulk acoustic resonator-based toluene gas sensor. J. Electronic Mater. 50(9), 5387–95 (2021)

    Article  ADS  Google Scholar 

  • Khan, D., Shirazi, M., A, Kim, M.Y.: Single shot laser speckle based 3D acquisition system for medical applications. Opt. Lasers Eng 105, 43–53 (2018)

    Article  Google Scholar 

  • Kim, Y.S., Lin, S.Y., Wu, H.Y., Pan, R.P.: A tunable terahertz filter and its switching properties in terahertz region based on a defect mode of a metallic photonic crystal. J. Appl. Phys. 109, 123111, 1–4 (2011)

  • Kimura, T., Daimon, K., Ogami, T., Kadota, M.: S0 mode lamb wave resonators using LiNbO3 thin plate on acoustic multilayer reflector. Jpn J. Appl. Phys 52, 3–7 (2013)

    Article  Google Scholar 

  • Kumar, N., Singh, M., Pandey, G.N., Suthar, B.: Propagation of microwaves in magnetized plasma and air-based ternary structure.  Renewable Energy and Storage Devices for Sustainable Development ed V K Jain, C Gomes and A Verma (Singapore: Springer Singapore) 81–6 (2022)

  • Li, X.W., Cho, S.J., Kim, S.T.: High security and robust optical image encryption approach based on computer-generated integral imaging pickup and iterative back-projection techniques. Opt. Lasers Eng 55, 162–182 (2014)

    Article  Google Scholar 

  • Li, M., Ling, J., He, Y., Javid, U.A., Xue, S., Lin, Q.: Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11(1), 1–8 (2020)

    ADS  Google Scholar 

  • Li, C., Peng, X., Zhang, H., Wang, C., Fan, S., Cao, S.: A sensitivity-enhanced flexible acoustic sensor using side-polished fiber Bragg grating. Measurement. 117, 252–7 (2018)

    Article  ADS  Google Scholar 

  • Lu, R., Yang, Y., Gong, S.: Acoustic loss in Thin-Film Lithium Niobate: an experimental study. J. Microelectromechanical Syst 30, 632–641 (2021)

    Article  Google Scholar 

  • Ma, H., Qu, S., Xu, Z.: Photonic crystals based on acousto-optic effects. J. Appl. Phys. 103(10), 1–4 (2008)

  • Mahmood, A., Kavungal, V., Ahmed, S.S., Farrell, G., Semenova: Y,: Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid. Opt. Lett. 40(1), 4983, 1–4 (2015)

  • Meng, Z.-M., Chen, C.-B., Qin, F.: Theoretical investigation of integratable photonic crystal nanobeam all-optical switching with ultrafast response and ultralow switching energy. J. Phys. D Appl. Phys 53, 205105, 1–7 (2020)

  • Morozov, G.V., Maev, R.G., Drake, G.W.F.: Switching of electromagnetic waves by two-layered periodic dielectric structures. Phys. Rev. E 60, 4860–4867 (1999)

    Article  ADS  Google Scholar 

  • Němec, H., Kužel, P., Duvillaret, L., Pashkin, A., Dressel, M., Sebastian, M.T.: Highly tunable photonic crystal filter for the terahertz range. Opt. Lett. 30, 549 (2005)

    Article  ADS  Google Scholar 

  • Paquin, F., Rivnay, J., Salleo, A., Stingelin, N., Silva, C.: Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015)

    Article  Google Scholar 

  • Park, W., Lee, J.B.: Mechanically tunable photonic crystal structure. Appl. Phys. Lett 85, 4845–4847 (2004)

    Article  ADS  Google Scholar 

  • Pathak, P., Jalal, A.S., Rai: R 2021 Breast cancer image classification: a review curr. Med Imaging 17720–40

  • Pourali, N., Alexander, K., Hessel, V., Rebrov, E.V.: Tunable enhanced faraday rotation in a defected plasma photonic crystal under external magnetic field with different declinations. J. Phys. D Appl. Phys 54, 505203 (2021)

    Article  Google Scholar 

  • Pouya, C., Overvelde, J.T., Kolle, M., Aizenberg, J., Bertoldi, K., Weaver, J.C., Vukusic, P.: Characterization of a mechanically tunable gyroid photonic crystal inspired by the butterfly parides sesostris. Adv. Opt. Mater. 4(1), 99–105 (2016)

    Article  Google Scholar 

  • Prakash, S., Sharma, G., Singh, V.: Ultra-fast tuning of refractive index in Lithium Niobate slab by GHz acoustic wave. Optik (Stuttg) 178, 256–262 (2019)

    Article  ADS  Google Scholar 

  • Rose, J.L.: Ultrasonic guided waves in solid media vol 9781107048 (2014)

  • Royer, D., Valier-Brasier, T.: Elastic Waves in Solids 1. Wiley (2022)

  • Sánchez, A., Orozco, S.: Elasto-optical effect on the band structure of a one-dimensional photonic crystal under hydrostatic pressure. J. Opt. Soc. Am. B 33, 1406–1410 (2016)

  • Sharma, G., Kumar, S., Prasad, S., Singh, V.: Estimation of photonic band gap in silicon crystal waveguide through acousto-optic interaction. Opt. Quantum Electron. 47, 3031–3040 (2015)

    Article  Google Scholar 

  • Sharma, G., Kumar, S., Singh, V.: Design of Si–SiO2 phoxonic crystal having defect layer for simultaneous sensing of biodiesel in a binary mixture of diesel through optical and acoustic waves. Acoust. Phys. 63, 159–167 (2017)

    Article  ADS  Google Scholar 

  • Singh, D.U., Bhoite, O., Narayanan, R.: Temperature tunable optical transmission using IR based 1D photonic crystals of VO2 nanostructures. J. Phys. D: Appl. Phy. 53(24), 1–7 (2020)

  • Singh, L.K., Pooja: Detection of glaucoma in retinal images based on multiobjective approach. Int. J. Appl. Evol. Comput 11, 15–27 (2020)

    Article  Google Scholar 

  • Soljačić, M., Joannopoulos, J.D.: Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3, 211–219 (2004)

    Article  ADS  Google Scholar 

  • Suthar, B., Bhargava, A.: Temp. Dependent Tunable Photonic 24, 338–340 (2012)

    Google Scholar 

  • Suthar, B., Kumar, N., Taya, S.A.: Design and analysis of tunable multichannel transmission filters with a binary photonic crystal of silver/silicon. Eur. Phys. J. Plus 137, 1301, 1–6 (2022)

  • Wang, H., Zhang, K.Q.: Photonic crystal structures with tunable structure color as colorimetric sensors. Sens. (Switzerland) 13, 4192–4213 (2013)

    Article  ADS  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • Yeh, P.: Optical Waves in Layered Media. Wiley (2005)

  • Yoshida, H., Fujita, H., Nakatsuka, M., Yoshimura, M., Sasaki, T., Kamamura, T., Yoshida, K.: Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction. Japanese J. Appl. Physics Part. 1 Regul. Pap Short. Notes Rev. Pap. 45, 766–769 (2006)

    Article  Google Scholar 

  • Zhao, Y., Wu, D., Lv, R.Q.: Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett 27, 26–29 (2015)

    Article  ADS  Google Scholar 

  • Zu, P., Chan, C.C., Lew, W.S., Hu, L., Jin, Y., Liew, H.F., Chen, L.H., Wong, W.C., Dong, X.: Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber. IEEE Photonics J. 4(2), 491–8 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. R D S Yadava, Department of Physics, Banaras Hindu University for valuable discussion and suggestions.

Funding

Authors are also acknowledged support from the Institutions of Eminence (IoE), Banaras Hindu University, Grant scheme No. 6031.

Author information

Authors and Affiliations

Authors

Contributions

SP has done the simulation work of the device structure and also developed the computational framework. SP, SM and GS helped in preparing the final draft. VS has devised the idea and helped while preparing the final draft and supervised.

Corresponding author

Correspondence to Vivek Singh.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, S., Maiti, S., Sharma, G. et al. Acoustically induced forbidden electromagnetic band gaps. Opt Quant Electron 55, 308 (2023). https://doi.org/10.1007/s11082-023-04586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04586-2

Keywords

Navigation