Skip to main content
Log in

High-resolution terahertz digital holography based on frequency-domain diagonal extension imaging

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

By leveraging frequency-domain diagonal extension (FDDE) imaging in terahertz (THz) in-line digital holography, the resolution of THz digital holography would be dramatically improved. The holography system in this work which utilizes a CO2-pumped 2.52 THz (118.83 μm) continuous-wave laser as the source and a pyroelectric-array camera with a pixel pitch of 100 μm as the detector could attain a resolution of 150 μm (~1.26 λ) near to the resolution limit of the system. FDDE imaging is a simple and effective method for resolution enhancement, where no new detector or other equipment is employed. Samples are imaged twice from different angles and then the high-frequency components of images are stitched to improve the resolution. Different from the traditional FDDE, weight-FDDE (w-FDDE) which can reduce the visibility distinction between different orientations of the synthetic picture by adding weight factors to produce a superior synthetic image is proposed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

All data generated and analyzed during this study are included in this article. The work described was original research that has not been published previously, and is not under consideration for publication elsewhere, in whole or in part.

References

  • Agour, M., Fallorf, C., Taleb, F., Castro-Camus, E., Koch, M., Bergmann, R.B.: Terahertz referenceless wavefront sensing by means of computational shear-interferometry. Opt. Express. 30(5), 7068–7081 (2022)

    Article  ADS  Google Scholar 

  • Ahi, K., Shahbazmohamadi, S., Asadizanjani, N.: Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Opt. Lasers. Eng. 104, 274–284 (2018)

    Article  Google Scholar 

  • Balbekin, N.S., Kulya, M.S., Belashov, A.V., Gorodetsky, A., Petrov, N.V.: Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography. Sci. Rep. 9(1), 284–286 (2019)

    Article  Google Scholar 

  • Blanchard, F., Chai, X., Tanaka, T., Arikawa, T., Ozaki, T., Morandotti, R., Tanaka, K.: Terahertz microscopy assisted by semiconductor nonlinearities. Opt. Lett. 43(20), 4997–5000 (2018)

    Article  ADS  Google Scholar 

  • Chopard, A., Tsiplakova, E., Balbekin, N., Smolyanskaya, O., Perraud, J.B., Guillet, J.P., Petrov, N.V., Mounaix, P.: Single-scan multiplane phase retrieval with a radiation of terahertz quantum cascade laser. Appl. Phys. B. 128(3), 63 (2022)

    Article  ADS  Google Scholar 

  • Choporova, Y., Knyazev, B., Pavelyev, V.: Holography with high-power CW coherent terahertz source: optical components, imaging, and applications. Light Adv. Manuf. 3, 31 (2022)

    Google Scholar 

  • Di Girolamo, F.V., Pagano, M., Tredicucci, A., Bitossi, M., Paoletti, R., Barzanti, G.P., Benvenuti, C., Roversi, P.F., Toncelli, A.: Detection of fungal infections in chestnuts: a terahertz imaging-based approach. Food. Control. 123, 107700 (2021)

    Article  Google Scholar 

  • Guizar, S.M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Opt. Lett. 33(2), 156–158 (2008)

    Article  ADS  Google Scholar 

  • Hu, J.Q., Li, Q., Cui, S.S.: Research on object-plane constraints and hologram expansion in phase retrieval algorithms for continuous-wave terahertz inline digital holography reconstruction. Appl. Opt. 53(30), 7112–7119 (2014)

    Article  ADS  Google Scholar 

  • Huang, H.C., Rong, L., Wang, D.Y., Li, W.H., Deng, Q.H., Li, B., Wang, Y.X., Zhan, Z.Q., Wang, X.M., Wu, W.D.: Synthetic aperture in terahertz in-line digital holography for resolution enhancement. Appl. Opt. 55(3), 43–48 (2016)

    Article  ADS  Google Scholar 

  • Huang, H.C., Qiu, P.Y., Panezai, S., Hao, S.B., Zhang, D.L., Yang, Y.Q., Ma, Y.Y., Gao, H., Gao, L., Zhang, Z.L., Zheng, Z.Y.: Continuous-wave terahertz high-resolution imaging via synthetic hologram extrapolation method using pyroelectric detector. Opt. Laser. Technol. 120, 105683 (2019)

    Article  Google Scholar 

  • Jiang, S., Guan, M., Wu, J., Fang, G.C., Xu, X.Z., Jin, D.Y., Liu, Z., Shi, K.B., Bai, F., Xi, P.: Frequency-domain diagonal extension imaging. Adv. Photon. 2(3), 036005–036005 (2020)

    Article  ADS  Google Scholar 

  • Latychevskaia, T.: Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes. Appl. Opt. 58(13), 3597–3603 (2019)

    Article  ADS  Google Scholar 

  • Li, Z.Y., Li, L., Qin, Y., Li, G.B., Wang, D., Zhou, X.: Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction. Opt. Express 24(18), 21134–21146 (2016)

    Article  ADS  Google Scholar 

  • Li, Z.Y., Zou, R.J., Kong, W.P., Wang, X.M., Deng, Q.H., Yan, Q., Qin, Y., Wu, W.D., Zhou, X.: Terahertz synthetic aperture in-line holography with intensity correction and sparsity autofocusing reconstruction. Photon. Res 7(12), 1391–1399 (2019)

    Article  Google Scholar 

  • Ma, J.J., Shrestha, R., Adelberg, J., Yeh, C.Y., Hossain, Z., Knightly, E., Jornet, J.M., Mittleman, D.M.: Security and eavesdropping in terahertz wireless links. Nature. 563(7729), 89–93 (2018)

    Article  ADS  Google Scholar 

  • MacPherson, E., Gallerano, G.P., Park, G.S., Hintzsche, H., Wilmink, G.J.: Terahertz imaging and spectroscopy for biology and biomedicine. IEEE J. Biomed. Health. 17(4), 765–767 (2013)

    Article  Google Scholar 

  • Mao, Q., Zhu, Y.L., Liu, J.B.: Terahertz image enhancing based on the physical model and multiscale retinex algorithm. Appl. Opt. 61(28), 8382–8388 (2022)

    Article  ADS  Google Scholar 

  • Minkevičius, L., Jokubauskis, D., Kašalynas, I., Orlov, S., Urbas, A., Valušis, G.: Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics. Opt. Express. 27(25), 36358–36367 (2019)

    Article  ADS  Google Scholar 

  • Petrov, N.V., Perraud, J.B., Chopard, A., Guillet, J.P., Smolyanskaya, O.A., Mounaix, P.: Terahertz phase retrieval imaging in reflection. Opt. Lett. 45(15), 4168–4171 (2020)

    Article  ADS  Google Scholar 

  • Petrov, N.V., Sokolenko, B., Kulya, M.S., Gorodetsky, A., Chernykh, A.V.: Design of broadband terahertz vector and vortex beams: II holographic assessment. Light Adv. Manuf. 3, 44 (2022)

    Google Scholar 

  • Rong, L., Latychevskaia, T., Wang, D.Y., Zhou, X., Huang, H.C., Li, Z.Y., Wang, Y.X.: Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation. Opt. Express 22(14), 17236–17245 (2014)

    Article  ADS  Google Scholar 

  • Siemion, A., Minkevičius, L., Qi, L., Valušis, G.: Spatial filtering based terahertz imaging of low absorbing objects. Opt. Lasers. Eng. 139, 106476 (2021)

    Article  Google Scholar 

  • Tang, L.: Polarization-varying anisotropic terahertz microscopy. Nat. Methods. 16(5), 362–362 (2019)

    Article  Google Scholar 

  • Valzania, L., Feurer, T., Zolliker, P., Erwin, H.: Terahertz ptychography”. Opt. Lett. 43(3), 543–546 (2018)

    Article  ADS  Google Scholar 

  • Xu, J., Zhang, Z.W., Yang, P., Dong, L.Q., Zhao, Y.J.: Nondestructive testing and 3D imaging of PE pipes using terahertz frequency modulated continuous wave. Appl. Opt. Accepted (2022). https://doi.org/10.1364/AO.468851

    Article  Google Scholar 

  • Xue, K., Li, Q., Li, Y.D., Wang, Q.: Continuous-wave terahertz in-line digital holography. Opt. Lett. 37(15), 3228–3230 (2012)

    Article  ADS  Google Scholar 

  • Yamagiwa, M., Minamikawa, T., Minamiji, F., Mizuno, T., Tokizane, Y., Oe, R., Koresawa, H., Mizutani, Y., Iwata, T., Yamamoto, H., Yasui, T.: Visualization of internal structure and internal stress in visibly opaque objects using full-field phase-shifting terahertz digital holography. Opt. Express 27(23), 33854–33868 (2019)

    Article  ADS  Google Scholar 

  • Zhang, Y., Du, S.Q., Hirakawa, K.: Deep-nanometer-scale terahertz spectroscopy using a transistor geometry with metal nanogap electrodes. Light Adv. Manuf. 2, 31 (2021)

    Google Scholar 

  • Zhao, Y.C., Vandenrijt, J.F., Kirkove, M., Georges, M.: Iterative phase-retrieval-assisted off-axis terahertz digital holography. Appl. Opt. 58(33), 9208–9216 (2019)

    Article  ADS  Google Scholar 

  • Zheng, G., Horstmeyer, R., Yang, C.: Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics. 7, 739–745 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Thanks to S. Jiang et al from Peking University for their help with the FDDE algorithm. Thanks to Y. Zhou from Zhejiang University and B. L Liu from Beihang University for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The part of experiments, simulations, algorithms, and the first draft of the manuscript were accomplished by Yao Wang. Qi Li helped with the experiment and revised previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yao Wang.

Ethics declarations

Conflict of interests

The authors have not disclosed any competing interests.

Ethical approval

This declaration is “not applicable”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Q. High-resolution terahertz digital holography based on frequency-domain diagonal extension imaging. Opt Quant Electron 55, 235 (2023). https://doi.org/10.1007/s11082-022-04509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04509-7

Keywords

Navigation