Skip to main content
Log in

Optical hybrid electrical visco ferromagnetic microscale with hybrid electrolytic thruster

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, we describe optical hybrid visco ferromagnetic \(_{hybrid}^{\mathcal {B}}\mathcal {M}_{\phi \left( \mathbf {T} \right) }^{visco},\) \(_{hybrid}^{\mathcal {B}}\mathcal {M}_{\phi \left( \mathbf { B}_{1}\right) }^{visco},\) \(_{hybrid}^{\mathcal {B}}\mathcal {M}_{\phi \left( \mathbf {B}_{2}\right) }^{visco}\) microscales with hybrid electrolytic thruster. Also, we obtain new optical electromagnetic hybrid microfluidic electrical visco ferromagnetic \(_{hybrid}^{\mathcal {E}}\mathcal {M} _{\phi \left( \mathbf {T}\right) }^{visco},\) \(_{hybrid}^{\mathcal {E}}\mathcal { M}_{\phi \left( \mathbf {B}_{1}\right) }^{visco},\) \(_{hybrid}^{\mathcal {E}} \mathcal {M}_{\phi \left( \mathbf {B}_{2}\right) }^{visco}\) microscales by using electromagnetic hybrid optimistic density in cold plasma. Finally, we illustrate electromagnetic phase of hybrid surface by using the hybrid electrolytic thruster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almaas, E., Brevik, I.: Possible sorting mechanism for microparticles in an evanescent field. Phys. Rev. A 87, 063826 (2013)

    Article  ADS  Google Scholar 

  • Anco, S.C., Myrzakulov, R.: Integrable generalizations of Schr ödinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces. J. Geom. Phys. 60(10), 1576–1603 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arbind, A., Reddy, J.N., Srinivasa, A.R.: A nonlinear 1-D finite element analysis of rods/tubes made of incompressible neo-Hookean materials using higher-order theory. Int. J. Solids Struct. 166, 1–21 (2019)

    Article  Google Scholar 

  • Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    Article  ADS  Google Scholar 

  • Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Article  ADS  Google Scholar 

  • Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys. Rev. Lett. 64(18), 2107 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47(6), 3108 (1993)

    Article  ADS  Google Scholar 

  • Barbashov, B.M., Nesterenko, V.: Introduction to the relativistic string theory. World Scientific, Singapore (1990)

    Book  Google Scholar 

  • Barros, M., Ferrández, A., Lucas, P., Merono, M.: Hopf cylinders, B-scrolls and solitons of the Betchov-Da Rios equation in the 3-dimensional anti-De Sitter space. CR Acad. Sci. Paris, Série I 321, 505–509 (1995)

    MATH  Google Scholar 

  • Barros, M., Ferrández, A., Lucas, P., Meroño, M.A.: Solutions of the Betchov-Da Rios soliton equation: a Lorentzian approach. J. Geom. Phys. 31(2–3), 217–228 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bliokh, K.Y.: Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A: Pure Appl. Opt. 11(9), 094009 (2009)

    Article  ADS  Google Scholar 

  • Bliokh, K.Y., Niv, A., Kleiner, V., Hasman, E.: Geometrodynamics of spinning light. Nature Photon. 2(12), 748 (2008)

    Article  ADS  Google Scholar 

  • Burns, M.M., Fournier, J.-M., Golovchenko, J.A.: Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989)

    Article  ADS  Google Scholar 

  • Chaumet, P.C., Nieto-Vesperinas, M.: Optical binding of particles with or without the presence of a flat dielectric surface. Phys. Rev. B 64, 035422 (2001)

    Article  ADS  Google Scholar 

  • De Sabbata, V., Sivaram, C.: Spin and torsion in gravitation. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  • Dholakia, K., Zemánek, P.: Colloquium: gripped by light: optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010)

    Article  ADS  Google Scholar 

  • Erdoğdu, M., Özdemir, M.: Geometry of Hasimoto surfaces in Minkowski 3-space. Math. Phys., Anal. Geom. 17(1–2), 169–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilmore, R.: Length and curvature in the geometry of thermodynamics. Phys. Rev. A 30(4), 1994 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Guo, B., Ding, S.: Landau-Lifshitz equations. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  • Han, X., Feng, Y., Cao, Q., Li, L.: Three-dimensional analysis and enhancement of continuous magnetic separation of particles in microfluidics. Microfluid Nanofluid 18(5–6), 1209–1220 (2015)

    Article  Google Scholar 

  • Hasimoto, H.: A soliton on a vortex filament. J. Fluid Mech. 51(3), 477–485 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R. C., Körpınar, Z. (2019). Soliton propagation of electromagnetic field vectors of polarized light ray traveling along with coiled optical fiber on the unit 2-sphere \(S^{2}.\) Rev. Mex. Fis. 65(6), 626-633

  • Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)

    Article  ADS  Google Scholar 

  • Körpınar, T.: Optical electromotive force with Heisenberg spherical ferromagnetic spin. Optik 245, 167521 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, Z., Korpinar, T.: Optical hybrid electric and magnetic \(\mathbf{B} _{1}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: New version of optical spherical electric and magnetic flow phase with some fractional solutions in \(\mathbb{S} _{\mathbb{H} ^{3}}^{2}\). Optik 243, 167378 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Optical spherical Ss-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021)

    Article  ADS  Google Scholar 

  • Korpinar, T., Körpınar, Z.: Timelike spherical magnetic \(\mathbb{S} _{\mathbf{N} }\) flux flows with Heisenberg sphericalferromagnetic spin with some solutions. Optik 242, 166745 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, Z., Körpınar, T.: Optical hybrid electric and magnetic B\(_{1}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, Z., Körpınar, T.: Optical tangent hybrid electromotives for tangent hybrid magnetic particle. Optik 247, 167823 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, Z., Korpinar, T.: Optical spherical electromotive density with some fractional applications with Laplace transform in spherical Heisenberg space \(\mathbb{S} _{\mathbb{H} }^{2}\). Optik 245, 167596 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, Z., Korpinar, T.: Optical spherical electroosmotic phase and optical energy for spherical \(\alpha\)-magnetic fibers. Optik 255, 168455 (2022)

    Article  ADS  Google Scholar 

  • Körpınar, Z., Korpinar, T.: Optical antiferromagnetic electric \(\mathbb{S} \alpha\)-flux with electroosmotic velocity in Heisenberg \(\mathbb{S} _{\mathbb{H} }^{2}\). Optik 252, 168206 (2022)

    Article  ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Optical electromagnetic flux fibers with optical antiferromagnetic model. Optik 251, 168301 (2022)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations. Eur. Phys. J. D 73(9), 203 (2019)

    Article  ADS  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space. Int. J. Geom. Methods Modern Phys. 16(8), 1950117 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Revista Mexicana de Física 66(4), 431–439 (2020)

    Article  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber. Optik 217, 164561 (2020)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \(\mathbb{S} _{Heis^{3}}^{2}\). Optik 247, 167937 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z., Demirkol, R.C., Yeneroğlu, M.: Optical quasi flux density of Heisenberg ferromagnetic spin with qHATM approach. Optik 245, 167567 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Sazak, A., Körpınar, Z.: Optical effects of some motion equations on quasi-frame with compatible Hasimoto map. Optik 247, 167914 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Optical magnetic helicity with binormal electromagnetic vortex filament flows in MHD. Optik 247, 167823 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Physica Scripta 96(8), 085219 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021)

    Article  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Asil, V., Körpınar, Z.: Magnetic flux surfaces by the fractional Heisenberg antiferromagnetic flow of magnetic b-lines in binormal direction in Minkowski space. J. Magnet. Magnet. Mater. 549, 168952 (2022)

    Article  Google Scholar 

  • Körpınar, T., Körpınar, Z., Asil, V.: Electric flux fibers with spherical antiferromagnetic approach with electroosmotic velocity. Optik 252, 168108 (2022)

    Article  ADS  Google Scholar 

  • Lee, R., Lampe, M.: Electromagnetic instabilities, filamentation, and focusing of relativistic electron beams. Phys. Rev. Lett. 31(23), 1390 (1973)

    Article  ADS  Google Scholar 

  • Liao, J., Shuryak, E.: Electric flux tube in a magnetic plasma. Phys. Rev. C 77(6), 064905 (2008)

    Article  ADS  Google Scholar 

  • Pesme, D., Rozmus, W., Tikhonchuk, V.T., Maximov, A., Ourdev, I., Still, C.H.: Resonant instability of laser filaments in a plasma. Phys. Rev. Lett. 84(2), 278 (2000)

    Article  ADS  Google Scholar 

  • Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A: Fluid Dyn. 4(5), 938–944 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ricca, R.L.: Inflexional disequilibrium of magnetic flux-tubes. Fluid Dyn. Res. 36(4–6), 319 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rosenbluth, M.N., Longmire, C.L.: Stability of plasmas confined by magnetic fields. Annals Phys. 1(2), 120–140 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schief, W.K., Rogers, C.: The Da Rios system under a geometric constraint: the Gilbarg problem. J. Geom. Phys. 54(3), 286–300 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vieira, V.R., Horley, P.P.: The Frenet-Serret representation of the Landau-Lifshitz-Gilbert equation. J. Phys. A: Math. Theor. 45(6), 065208 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wassmann, F., Ankiewicz, A.: Berry’s phase analysis of polarization rotation in helicoidal fibers. Appl. Opt. 37(18), 3902–3911 (1998)

    Article  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talat Körpinar.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Körpinar, Z. Optical hybrid electrical visco ferromagnetic microscale with hybrid electrolytic thruster. Opt Quant Electron 54, 826 (2022). https://doi.org/10.1007/s11082-022-04169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04169-7

Keywords

PACS

Navigation