Skip to main content
Log in

The role of plasmonic metal-oxides core-shell nanoparticles on the optical absorption of Perovskite solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Among all the different methods to enhance the optical absorption of photovoltaic devices. The plasmonic effect is one the most prominent and effective ways to capture more incident light and also provide good carrier dynamic management. Here, we systematically introduce spherical gold nanoparticles (Au NPs) with different radii in the absorber layer of perovskite solar cells (PSCs). The overall enhanced optical absorption of around 14.20% and 20.02% is achieved for incorporated monolayer and bilayer Au NPs, respectively, in the active layer compared to the pure perovskite layer. Moreover, we employ the metal (Au)-dielectric (TiO2 and SiO2) nanoparticles in the absorber layer. The optical absorption increases as the core-shell size decreases. The optical absorption elevates in both Au@TiO2 core-shell and Au@SiO2 core-shell 17.5% and 3.5%, respectively. These results support superior separation and transfer of charge in the existence of plasmonic NPs. In addition, this study presents a very sophisticated approach to the optical enhancement of PSCs and thus helps to boost the overall photovoltaic device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aeineh, N., Barea, E.M., Behjat, A., Sharifi, N., Mora-Seró, I.: Inorganic surface engineering to enhance perovskite solar cell efficiency. ACS Appl. Mater. Interfaces. 9, 13181–13187 (2017)

    Article  Google Scholar 

  • Alden Mostaan, S.M., Saghaei, H.: A tunable broadband graphene-based metamaterial absorber in the far-infrared region. Opt. Quantum Electron. 53, 96 (2021). https://doi.org/10.1007/s11082-021-02744-y

    Article  Google Scholar 

  • Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group.1–11(2011)

  • Batmunkh, M., Macdonald, T.J., Peveler, W.J., Bati, A.S.R., Carmalt, C.J., Parkin, I.P., Shapter, J.G.: Plasmonic Gold Nanostars Incorporated into High-Efficiency Perovskite Solar Cells. ChemSusChem. 10, 3750–3753 (2017)

  • Brown, M.D., Suteewong, T., Kumar, R.S.S., D’Innocenzo, V., Petrozza, A., Lee, M.M., Wiesner, U., Snaith, H.J.: Plasmonic dye-sensitized solar cells using core – shell metal – insulator nanoparticles. Nano Lett. 11, 438–445 (2011)

    Article  ADS  Google Scholar 

  • Chandrasekhar, P.S., Dubey, A., Reza, K.M., Hasan, M.D.N., Bahrami, B., Komarala, V.K., Hoefelmeyer, J.D., He, Q., Wu, F., Qiao, H.: Higher efficiency perovskite solar cells using Au@ SiO 2 core–shell nanoparticles. Sustainable Energy & Fuels. 2, 2260–2267 (2018)

    Article  Google Scholar 

  • Cheng, Y., Chen, C., Chen, X., Jin, J., Li, H., Song, H., Dai, Q.: Considerably enhanced perovskite solar cells via the introduction of metallic nanostructures. J. Mater. Chem. A. 5, 6515–6521 (2017)

    Article  Google Scholar 

  • Derkacs, D., Lim, S.H., Matheu, P., Mar, W., Yu, E.T.: Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89, 093103 (2006)

    Article  ADS  Google Scholar 

  • Ecija, A., Larrañaga, A., Vidal, K., Ortega, L., Arriortua, M.I.: Synthetic methods for perovskite materials; structure and morphology. INTECH Open Access Publisher (2012)

  • Elumalai, N.K., Mahmud, M.A., Wang, D., Uddin, A.: Perovskite solar cells: progress and advancements. Energies (Basel). 9, 861 (2016)

    Article  Google Scholar 

  • Fan, R., Wang, L., Chen, Y., Zheng, G., Li, L., Li, Z., Zhou, H.: Tailored Au@ TiO 2 nanostructures for the plasmonic effect in planar perovskite solar cells. J. Mater. Chem. A. 5, 12034–12042 (2017)

    Article  Google Scholar 

  • Filipič, M., Löper, P., Niesen, B., de Wolf, S., Krč, J., Ballif, C., Topič, M.: CH 3 NH 3 PbI 3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express. 23, A263–A278 (2015)

    Article  Google Scholar 

  • Furasova, A., Calabró, E., Lamanna, E., Tiguntseva, E., Ushakova, E., Ubyivovk, E., Mikhailovskii, V., Zakhidov, A., Makarov, S., di Carlo, A.: Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells. Adv. Opt. Mater. 6, 1800576 (2018)

    Article  Google Scholar 

  • Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics. 8, 506–514 (2014)

    Article  ADS  Google Scholar 

  • Hajjiah, A., Kandas, I., Shehata, N.: Efficiency enhancement of perovskite solar cells with plasmonic nanoparticles: A simulation study. Materials. 11, 1626 (2018)

    Article  ADS  Google Scholar 

  • Huang, J., Yuan, Y., Shao, Y., Yan, Y.: Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Reviews Mater. 2, 1–19 (2017)

    Article  Google Scholar 

  • Johnson, P.B., Christy, R.-W.: Optical constants of the noble metals. Phys. Rev. B. 6, 4370 (1972)

    Article  ADS  Google Scholar 

  • Kandjani, S.A., Mirershadi, S., Nikniaz, A.: Inorganic–organic perovskite solar cells. Solar Cells-New Approaches and Reviews. 10, 58970 (2015)

    Google Scholar 

  • Khan, I., Saeed, K., Khan, I.: Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019)

    Article  Google Scholar 

  • Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012)

    Article  Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  • Lee, H., Lee, Y.K., Hwang, E., Park, J.Y.: Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission. J. Phys. Chem. C. 118, 5650–5656 (2014)

    Article  Google Scholar 

  • Li, W., Elzatahry, A., Aldhayan, D., Zhao, D.: Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Reviews. 47, 8203–8237 (2018)

    Article  Google Scholar 

  • Liu, D., Gangishetty, M.K., Kelly, T.L.: Effect of CH 3 NH 3 PbI 3 thickness on device efficiency in planar heterojunction perovskite solar cells. J. Mater. Chem. A. 2, 19873–19881 (2014)

    Article  Google Scholar 

  • Löper, P., Stuckelberger, M., Niesen, B., Werner, J., Filipic, M., Moon, S.-J., Yum, J.-H., Topič, M., de Wolf, S., Ballif, C.: Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6, 66–71 (2015)

    Article  Google Scholar 

  • Luo, Q., Zhang, C., Deng, X., Zhu, H., Li, Z., Wang, Z., Chen, X., Huang, S.: Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces. 9, 34821–34832 (2017)

    Article  Google Scholar 

  • Mola, G.T., Mthethwa, M.C., Hamed, M.S.G., Adedeji, M.A., Mbuyise, X.G., Kumar, A., Sharma, G., Zang, Y.: Local surface plasmon resonance assisted energy harvesting in thin film organic solar cells. J. Alloys Compd. 856, 158172 (2021). https://doi.org/10.1016/j.jallcom.2020.158172

    Article  Google Scholar 

  • Naghizade, S., Saghaei, H.: Tunable graphene-on-insulator band-stop filter at the mid-infrared region. Opt. Quantum Electron. 52, 224 (2020). https://doi.org/10.1007/s11082-020-02350-4

    Article  Google Scholar 

  • Rehman, A.U., Khan, M., Khan, A.D., Raja, A.A., Aslam, M., Khan, S., Imran, M.: The effect of plasmonic multilayered photoanode structures on the absorption of dye-sensitized solar cells. Japanese J. Appl. Phys. 60, 011004 (2021)

    Article  ADS  Google Scholar 

  • Roy, S., Botte, G.G.: Perovskite solar cell for photocatalytic water splitting with a TiO 2/Co-doped hematite electron transport bilayer. RSC Adv. 8, 5388–5394 (2018)

    Article  ADS  Google Scholar 

  • Shalan, A.E., Oshikiri, T., Sawayanagi, H., Nakamura, K., Ueno, K., Sun, Q., Wu, H.-P., Diau, E.W.-G., Misawa, H.: Versatile plasmonic-effects at the interface of inverted perovskite solar cells. Nanoscale. 9, 1229–1236 (2017)

    Article  Google Scholar 

  • Sui, M., Kunwar, S., Pandey, P., Lee, J.: Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles. Sci. Rep. 9, 1–14 (2019)

    Article  ADS  Google Scholar 

  • Tabrizi, A.A., Pahlavan, A.: Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer. Opt. Commun. 454, 124437 (2020). https://doi.org/10.1016/j.optcom.2019.124437

    Article  Google Scholar 

  • Tabrizi, A.A., Saghaei, H., Mehranpour, M.A., Jahangiri, M.: Enhancement of absorption and effectiveness of a perovskite thin-film solar cell embedded with Gold nanospheres. Plasmonics. 16, 747–760 (2021). https://doi.org/10.1007/s11468-020-01341-1

    Article  Google Scholar 

  • Tavakoli, F., Zarrabi, F.B., Saghaei, H.: Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region. Appl. Opt. 58, 5404–5414 (2019)

    Article  ADS  Google Scholar 

  • Thaver, Y., Oseni, S.O., Tessema Mola, G.: Silver doped nickel oxide nanocomposite and photon harvesting enhancement in bulkheterojunction organic solar cell. Sol. Energy. 214, 11–18 (2021). https://doi.org/10.1016/j.solener.2020.11.044

    Article  ADS  Google Scholar 

  • Vangelidis, I., Theodosi, A., Beliatis, M.J., Gandhi, K.K., Laskarakis, A., Patsalas, P., Logothetidis, S., Silva, S.R.P., Lidorikis, E.: Plasmonic organic photovoltaics: unraveling plasmonic enhancement for realistic cell geometries. Acs Photonics. 5, 1440–1452 (2018)

    Article  Google Scholar 

  • Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H.: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017) (1979)

  • Yuan, Z., Wu, Z., Bai, S., Xia, Z., Xu, W., Song, T., Wu, H., Xu, L., Si, J., Jin, Y.: Hot-electron injection in a sandwiched TiOx–Au–TiOx structure for high‐performance planar perovskite solar cells. Adv. Energy Mater. 5, 1500038 (2015)

    Article  Google Scholar 

  • Zhang, W.E.I., Saliba, M., Stranks, S.D., Sun, Y., Shi, X., Wiesner, U., Snaith, H.J.: Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett. 13, 4505–4510 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

The authors declare no funding was received for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Saghaei.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Saghaei, H., Khan, J. et al. The role of plasmonic metal-oxides core-shell nanoparticles on the optical absorption of Perovskite solar cells. Opt Quant Electron 54, 675 (2022). https://doi.org/10.1007/s11082-022-04051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04051-6

Keywords

Navigation